Skip to main content
Log in

Deterministic transfer of multiqubit GHZ entangled states and quantum secret sharing between different cavities

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a way for transferring Greenberger–Horne–Zeilinger (GHZ) entangled states from n qubits in one cavity to another n qubits in the other cavity. It is shown that n-qubit GHZ states \(\alpha \left| 00\ldots 0\right\rangle +\beta \left| 11\ldots 1\right\rangle \) with arbitrary degree of entanglement can be transferred deterministically. Both of the GHZ state transfer and the operation time are not dependent on the number of qubits, and there is no need of measurement. This proposal is quite general and can be applied to accomplish the same task for a wide range of physical qubits. Furthermore, note that the n-qubit GHZ state \(\alpha \left| 00\ldots 0\right\rangle +\beta \left| 11\ldots 1\right\rangle \) is a quantum-secret-sharing code for encoding a single-qubit arbitrary pure state \(\alpha \left| 0\right\rangle +\beta \left| 1\right\rangle \). Thus, this work also provides a way to transfer quantum secret sharing from n qubits in one cavity to another n qubits in the other cavity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Greenberger, D.M., Horne, M.A., Zeilinger, A.: Going beyond Bell theorem. In: Kafatos, M. (ed.) Bell Theorem, Quantum Theory and Conceptions of the Universe. Kluwer Academic, Dordrecht (1989)

    Google Scholar 

  2. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced measurements: Beating the standard quantum limit. Science 306, 1330 (2004)

    Article  ADS  Google Scholar 

  3. Bollinger, J.J., Itano, W.M., Wineland, D.J., Heinzen, D.J.: Optimal frequency measurements with maximally correlated states. Phys. Rev. A 54, R4649 (1996)

    Article  ADS  Google Scholar 

  4. Bergquist, J.C., Jefferts, S.R., Wineland, D.J.: Time measurement at the millennium. Phys. Today 54(3), 37 (2001)

    Article  Google Scholar 

  5. Leibfried, D., Barrett, M.D., Schaetz, T., Britton, J., Chiaverini, J., Itano, W.M., Jost, J.D., Langer, C., Wineland, D.J.: Toward Heisenberg-limited spectroscopy with multiparticle entangled states. Science 304, 1476 (2004)

    Article  ADS  Google Scholar 

  6. Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  7. Jung, E., Hwang, M.R., JuYou, H., Kim, M.S., Yoo, S.K., Kim, H., Park, D., Son, J.W., Tamaryan, S., Cha, S.K.: Greenberger–Horne–Zeilinger versus W states: quantum teleportation through noisy channels. Phys. Rev. A 78, 012312 (2008)

    Article  ADS  Google Scholar 

  8. Lu, C.Y., Yang, T., Pan, J.W.: Experimental multiparticle entanglement swapping for quantum networking. Phys. Rev. Lett. 103, 020501 (2009)

    Article  ADS  Google Scholar 

  9. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. DiVincenzo, D.P., Shor, P.W.: Fault-tolerant error correction with efficient quantum codes. Phys. Rev. Lett. 77, 3260 (1996)

    Article  ADS  Google Scholar 

  11. Preskill, J.: Reliable quantum computers. Proc. R. Soc. Lond. Ser. A 454, 385 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Cirac, J.I., Zoller, P.: Preparation of macroscopic superpositions in many-atom systems. Phys. Rev. A 50, R2799 (1994)

    Article  ADS  Google Scholar 

  13. Gerry, C.C.: Preparation of multiatom entangled states through dispersive atom-cavity-field interactions. Phys. Rev. A 53, 2857 (1996)

    Article  ADS  Google Scholar 

  14. Zheng, S.B.: One-step synthesis of multiatom Greenberger–Horne–Zeilinger states. Phys. Rev. Lett. 87, 230404 (2001)

    Article  ADS  Google Scholar 

  15. Wang, X., Feng, M., Sanders, B.C.: Multipartite entangled states in coupled quantum dots and cavity QED. Phys. Rev. A 67, 022302 (2003)

    Article  ADS  Google Scholar 

  16. Feng, W., Wang, P., Ding, X., Xu, L., Li, X.Q.: Generating and stabilizing the Greenberger–Horne–Zeilinger state in circuit QED: joint measurement, Zeno effect, and feedback. Phys. Rev. A 83, 042313 (2011)

    Article  ADS  Google Scholar 

  17. Yang, C.P.: Preparation of n-qubit Greenberger–Horne–Zeilinger entangled states in cavity QED: an approach with tolerance to nonidentical qubit-cavity coupling constants. Phys. Rev. A 83, 062302 (2011)

    Article  ADS  Google Scholar 

  18. Zhu, S.L., Wang, Z.D., Zanardi, P.: Geometric quantum computation and multiqubit entanglement with superconducting qubits inside a cavity. Phys. Rev. Lett. 94, 100502 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  19. Aldana, S., Wang, Y.D., Bruder, C.: Greenberger–Horne–Zeilinger generation protocol for N superconducting transmon qubits capacitively coupled to a quantum bus. Phys. Rev. B 84, 134519 (2011)

    Article  ADS  Google Scholar 

  20. Bishop, L.S., et al.: Proposal for generating and detecting multi-qubit GHZ states in circuit QED. New J. Phys. 11, 073040 (2009)

    Article  ADS  Google Scholar 

  21. Duan, L.M., Kimble, H.J.: Efficient engineering of multiatom entanglement through single-photon detections. Phys. Rev. Lett. 90, 253601 (2003)

    Article  ADS  Google Scholar 

  22. Huang, Y.F., Liu, B.H., Peng, L., Li, Y.H., Li, L., Li, C.F., Guo, G.C.: Experimental generation of an eight-photon Greenberger–Horne–Zeilinger state. Nat. Commun. 2, 546 (2011)

    Article  ADS  Google Scholar 

  23. Yao, X.C., Wang, T.X., Xu, P., Lu, H., Pan, G.S., Bao, X.H., Peng, C.Z., Lu, C.Y., Chen, Y.A., Pan, J.W.: Observation of eight-photon entanglement. Nat. Photonics 6, 225 (2012)

    Article  ADS  Google Scholar 

  24. Monz, T., Schindler, P., Barreiro, J.T., Chwalla, M., Nigg, D., Coish, W.A., Harlander, M., Hänsel, W., Hennrich, M., Blatt, R.: 14-Qubit entanglement: creation and coherence. Phys. Rev. Lett. 106, 130506 (2011)

    Article  ADS  Google Scholar 

  25. Chow, J.M., et al.: Implementing a strand of a scalable fault-tolerant quantum computing fabric. Nat. Commun. 5, 4015 (2014)

    Article  ADS  Google Scholar 

  26. Barends, R., et al.: Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature 508, 500 (2014)

    Article  ADS  Google Scholar 

  27. Dogra, S., Dorai, K., Arvind, : Experimental construction of generic three-qubit states and their reconstruction from two-party reduced states on an NMR quantum information processor. Phys. Rev. A 91, 022312 (2015)

    Article  ADS  Google Scholar 

  28. Cirac, J.I., Zoller, P., Kimble, H.J., Mabuchi, H.: Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221 (1997)

    Article  ADS  Google Scholar 

  29. Pellizzari, T.: Quantum networking with optical fibres. Phys. Rev. Lett. 79, 5242 (1997)

    Article  ADS  Google Scholar 

  30. Yang, C.P., Chu, S.I., Han, S.: Possible realization of entanglement, logical gates, and quantum-information transfer with superconducting-quantum-interference-device qubits in cavity QED. Phys. Rev. A 67, 042311 (2003)

    Article  ADS  Google Scholar 

  31. Yang, C.P., Chu, S.I., Han, S.: Quantum information transfer and entanglement with SQUID qubits in cavity QED: a dark-state scheme with tolerance for nonuniform device parameter. Phys. Rev. Lett. 92, 117902 (2004)

    Article  ADS  Google Scholar 

  32. Serafini, A., Mancini, S., Bose, S.: Distributed quantum computation via optical fibers. Phys. Rev. Lett. 96, 010503 (2006)

    Article  ADS  Google Scholar 

  33. Yin, Z.Q., Li, F.L.: Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber. Phys. Rev. A 75, 012324 (2007)

    Article  ADS  Google Scholar 

  34. Lü, X.Y., Liu, J.B., Ding, C.L., Li, J.H.: Dispersive atom-field interaction scheme for three-dimensional entanglement between two spatially separated atoms. Phys. Rev. A 78, 032305 (2008)

    Article  ADS  Google Scholar 

  35. Yang, C.P.: Quantum information transfer with superconducting flux qubits coupled to a resonator. Phys. Rev. A 82, 054303 (2010)

    Article  ADS  Google Scholar 

  36. Dong, Y.L., Zhu, S.Q., You, W.L.: Quantum-state transmission in a cavity array via two-photon exchange. Phys. Rev. A 85, 023833 (2012)

    Article  ADS  Google Scholar 

  37. Yang, C.P., Su, Q.P., Nori, F.: Entanglement generation and quantum information transfer between spatially-separated qubits in different cavities. New J. Phys. 15, 115003 (2013)

    Article  ADS  Google Scholar 

  38. Majer, J., et al.: Coupling superconducting qubits via a cavity bus. Nature 449, 443 (2007)

    Article  ADS  Google Scholar 

  39. Steffen, L., et al.: Deterministic quantum teleportation with feed-forward in a solid state system. Nature 500, 319 (2013)

    Article  ADS  Google Scholar 

  40. Ritter, S., Nölleke, C., Hahn, C., Reiserer, A., Neuzner, A., Uphoff, M., Mücke, M., Figueroa, E., Bochmann, J., Rempe, G.: An elementary quantum network of single atoms in optical cavities. Nature 484, 195 (2012)

    Article  ADS  Google Scholar 

  41. Lee, J., Kim, M.S.: Entanglement teleportation via Werner states. Phys. Rev. Lett. 84, 4236 (2000)

    Article  ADS  Google Scholar 

  42. Hong, L., Guo, G.C.: Teleportation of a two-particle entangled state via entanglement swapping. Phys. Lett. A 276, 209 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. Yang, C.P., Guo, G.C.: A proposal of teleportation for three-particle entangled state. Chin. Phys. Lett. 16, 628 (1999)

    Article  ADS  Google Scholar 

  44. Paternostro, M., Son, W., Kim, M.S.: Complete conditions for entanglement transfer. Phys. Rev. Lett. 92, 197901 (2004)

    Article  ADS  Google Scholar 

  45. Banchi, L., Apollaro, T.J.G., Cuccoli, A., Vaia, R., Verrucchi, P.: Long quantum channels for high-quality entanglement transfer. New J. Phys. 13, 123006 (2011)

    Article  ADS  Google Scholar 

  46. Ikram, M., Zhu, S.Y., Zubairy, M.S.: Quantum teleportation of an entangled state. Phys. Rev. A 62, 022307 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  47. Wu, Q.Q., Xu, L., Tan, Q.S., Yan, L.L.: Multipartite entanglement transfer in a hybrid circuit-QED system. Int. J. Theor. Phys. 51, 5 (2012)

    MATH  Google Scholar 

  48. Bina, M., Casagrande, F., Lulli, A., Genont, M.G., Paris, G.A.M.: Entanglement transfer in a multipartite cavity QED open system. Int. J. Quantum Inform. 09, 83 (2011)

  49. Pan, J.W., Daniell, M., Gasparoni, S., Weihs, G., Zeilinger, A.: Experimental four-photon entanglement and high-fidelity teleportation. Phys. Rev. Lett. 86, 4435 (2001)

    Article  ADS  Google Scholar 

  50. Jennewein, T., Weihs, G., Pan, J.W., Zeilinger, A.: Experimental nonlocality proof of quantum teleportation and entanglement swapping. Phys. Rev. Lett. 88, 017903 (2001)

    Article  ADS  Google Scholar 

  51. Bar-Gill, N., Pham, L.M., Jarmola, A., Budker, D., Walsworth, R.L.: Solid-state electronic spin coherence time approaching one second. Nat. Commun. 4, 1743 (2013)

    Article  ADS  Google Scholar 

  52. Xiang, Z.L., Ashhab, S., You, J.Q., Nori, F.: Hybrid quantum circuits: superconducting circuits interacting with other quantum systems. Rev. Mod. Phys. 85, 623 (2013)

    Article  ADS  Google Scholar 

  53. Imamoğlu, A.: Cavity QED based on collective magnetic dipole coupling: spin ensembles as hybrid two-level systems. Phys. Rev. Lett. 102, 083602 (2009)

    Article  ADS  Google Scholar 

  54. Wesenberg, J.H., Ardavan, A.: G. A. FD. Briggs, J. J. L. Morton, R. J. Schoelkopf, D. I. Schuster, and K. Mømer, Quantum computing with an electron spin ensemble. Phys. Rev. Lett. 103, 070502 (2009)

    Article  ADS  Google Scholar 

  55. Qiu, Y.Y., Xiong, W., Tian, L., You, J.Q.: Coupling spin ensembles via superconducting flux qubits. Phys. Rev. A 89, 042321 (2014)

    Article  ADS  Google Scholar 

  56. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  57. Clarke, J., Wilhelm, F.K.: Superconducting quantum bits. Nature 453, 1031 (2008)

    Article  ADS  Google Scholar 

  58. Neeley, M., et al.: Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state. Nat. Phys. 4, 523 (2008)

    Article  Google Scholar 

  59. Leek, P.J., et al.: Using sideband transitions for two-qubit operations in superconducting circuits. Phys. Rev. B 79, 180511(R) (2009)

    Article  ADS  Google Scholar 

  60. Strand, J.D., et al.: First-order sideband transitions with flux-driven asymmetric transmon qubits. Phys. Rev. B 87, 220505(R) (2013)

    Article  ADS  Google Scholar 

  61. Xiang, Z.L., Lü, X.Y., Li, T.F., You, J.Q., Nori, F.: Hybrid quantum circuit consisting of a superconducting flux qubit coupled to a spin ensemble and a transmission-line resonator. Phys. Rev. B 87, 144516 (2013)

    Article  ADS  Google Scholar 

  62. Neumann, P., Kolesov, R., Jacques, V., Beck, J., Tisler, J., Batalov, A., Rogers, L., Manson, N.B., Balasubramanian, G., Jelezko, F., Wrachtrup, J.: Excited-state spectroscopy of single NV defects in diamond using optically detected magnetic resonance. New J. Phys. 11, 013017 (2009)

    Article  ADS  Google Scholar 

  63. Pradhan, P., Anantram, M.P., Wang, K.L.: Quantum computation by optically coupled steady atoms/quantum-dots inside a quantum electro-dynamic cavity. arXiv:quant-ph/0002006

  64. Yang, C.P., Han, S.: n-qubit-controlled phase gate with superconducting quantum interference devices coupled to a resonator. Phys. Rev. A 72, 032311 (2005)

    Article  ADS  Google Scholar 

  65. Zheng, S.B., Guo, G.C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392 (2000)

    Article  ADS  Google Scholar 

  66. Sørensen, A., Mølmer, K.: Quantum computation with ions in thermal motion. Phys. Rev. Lett. 82, 1971 (1999)

    Article  ADS  Google Scholar 

  67. He, X.L., Yang, C.P., Li, S., Luo, J.Y., Han, S.: Quantum logical gates with four-level superconducting quantum interference devices coupled to a superconducting resonator. Phys. Rev. A 82, 024301 (2010)

    Article  ADS  Google Scholar 

  68. Yang, C.P., Chu, S.I., Han, S.: Simplified realization of two-qubit quantum phase gate with four-level systems in cavity QED. Phys. Rev. A 70, 044303 (2004)

    Article  ADS  Google Scholar 

  69. Su, Q.P., Yang, C.P., Zheng, S.B.: Fast and simple scheme for generating NOON states of photons in circuit QED. Sci. Rep. 4, 3898 (2014)

    ADS  Google Scholar 

  70. Yu, Y., Han, S.: Private communication (2015)

  71. Baur, M., Fedorov, A., Steffen, L., Filipp, S., da Silva, M.P., Wallraff, A.: Benchmarking a quantum teleportation protocol in superconducting circuits using tomography and an entanglement witness. Phys. Rev. Lett. 108, 040502 (2012)

    Article  ADS  Google Scholar 

  72. Fedorov, A., Steffen, L., Baur, M., da Silva, M.P., Wallraff, A.: Implementation of a Toffoli gate with superconducting circuits. Nature 481, 170 (2012)

    Article  ADS  Google Scholar 

  73. Koch, J., et al.: Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007)

    Article  ADS  Google Scholar 

  74. Chang, J.B., et al.: Improved superconducting qubit coherence using titanium nitride. Appl. Phys. Lett. 103, 012602 (2013)

    Article  ADS  Google Scholar 

  75. Paik, H., et al.: Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. Phys. Rev. Lett. 107, 240501 (2011)

    Article  ADS  Google Scholar 

  76. Chow, J.M., et al.: Implementing a strand of a scalable fault-tolerant quantum computing fabric. Nat. Commun. 5, 4015 (2014)

    Article  ADS  Google Scholar 

  77. Chen, W., Bennett, D.A., Patel, V., Lukens, J.E.: Substrate and process dependent losses in superconducting thin film resonators. Supercond. Sci. Technol. 21, 075013 (2008)

    Article  ADS  Google Scholar 

  78. Leek, P.J., Baur, M., Fink, J.M., Bianchetti, R., Steffen, L., Filipp, S., Wallraff, A.: Cavity quantum electrodynamics with separate photon storage and qubit readout modes. Phys. Rev. Lett. 104, 100504 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grant Nos. 11074062 and 11374083, the Zhejiang Natural Science Foundation under Grant Nos. LZ13A040002 and LY15A040006, and the funds from Hangzhou Normal University under Grant Nos. HSQK0081 and PD13002004. This work was also supported by the funds of Hangzhou City for supporting the Hangzhou-City Quantum Information and Quantum Optics Innovation Research Team.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chui-Ping Yang.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, XL., Yang, CP. Deterministic transfer of multiqubit GHZ entangled states and quantum secret sharing between different cavities. Quantum Inf Process 14, 4461–4474 (2015). https://doi.org/10.1007/s11128-015-1131-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1131-9

Keywords

Navigation