Skip to main content
Log in

Quantum correlation evolution of GHZ and \(W\) states under noisy channels using ameliorated measurement-induced disturbance

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study quantum correlation of Greenberger–Horne–Zeilinger (GHZ) and W states under various noisy channels using measurement-induced disturbance approach and its optimized version. Although these inequivalent maximal entangled states represent the same quantum correlation in the absence of noise, it is shown that the W state is more robust than the GHZ state through most noisy channels. Also, using measurement-induced disturbance measure, we obtain the analytical relations for the time evolution of quantum correlations in terms of the noisy parameter \(\kappa \) and remove its overestimating quantum correlations upon implementing the ameliorated measurement-induced disturbance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Bennett, C.H., DiVincenzo, D.P., Fuchs, C.A., Mor, T., Rains, E., Shore, P.W., Smolin, J.A., Wootters, W.K.: Quantum nonlocality without entanglement. Phys. Rev. A 59, 1070 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  3. Braunstein, S.L., Caves, C.M., Jozsa, R., Linden, N., Popescu, S., Schack, R.: Separability of very noisy mixed states and implications for NMR quantum computing. Phys. Rev. Lett. 83, 1054 (1999)

  4. Meyer, D.A.: Sophisticated quantum search without entanglement. Phys. Rev. Lett. 85, 2014 (2000)

  5. Biham, E., Brassard, G., Kenigsberg, D., Mor, T.: Quantum computing without entanglement. Theor. Comput. Sci. 320, 15 (2004)

  6. Datta, A., Flammia, S.T., Caves, C.M.: Entanglement and the power of one qubit. Phys. Rev. A 72, 042316 (2005)

    Article  ADS  Google Scholar 

  7. Datta, A., Vidal, G.: On the role of entanglement and correlations in mixed-state quantum computation. Phys. Rev. A 75, 042310 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  8. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

  9. Rajagopal, A.K., Rendell, R.W.: Separability and correlations in composite states based on entropy methods. Phys. Rev. A 66, 022104 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  10. Horodecki, M., Horodecki, P., Horodecki, R., Oppenheim, J.: Sen(De), A., Sen, U., Synak-Radtke, B.: Local versus nonlocal information in quantum-information theory: formalism and phenomena. Phys. Rev. A 71, 062307 (2005)

  11. Devetak, I.: Distillation of local purity from quantum states. Phys. Rev. A 71, 062303 (2005)

    Article  ADS  Google Scholar 

  12. Devi, Usha: A.R., Rajagopal, A.K.: Generalized information theoretic measure to discern the quantumness of correlations. Phys. Rev. Lett. 100, 140502 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  13. Modi, K., Paterek, T., Son, W., Vedral, V., Williamson, M.: Unified view of quantum and classical correlations. Phys. Rev. Lett. 104, 080501 (2010)

  14. Shabani, A.: Lidar, Daniel A.: Vanishing quantum discord is necessary and sufficient for completely positive maps. Phys. Rev. Lett. 102, 100402 (2009)

    Article  ADS  Google Scholar 

  15. Rulli, C.C., Sarandy, M.S.: Global quantum discord in multipartite systems. Phys. Rev. A 84, 042109 (2011)

    Article  ADS  Google Scholar 

  16. Giorda, P., Allegra, M.: Paris, Matteo G.A.: Quantum discord for Gaussian states with non-Gaussian measurements. Phys. Rev. A 86, 052328 (2012)

    Article  ADS  Google Scholar 

  17. Terzis, A.F., Androvitsaneas, P., Paspalakis, E.: Thermal quantum discord and classical correlations in a two-qubit Ising model under a site-dependent magnetic field. Quant. Inf. Proc. 11, 1931 (2012)

    Article  MathSciNet  Google Scholar 

  18. Pinto, J.P.G., Karpat, G., Fanchini, F.F.: Sudden change of quantum discord for a system of two qubits. Phys. Rev. A 88, 034304 (2013)

    Article  ADS  Google Scholar 

  19. Girolami, D., Adesso, G.: Quantum discord for general two-qubit states: analytical progress. Phys. Rev. A 83, 052108 (2011)

  20. Luo, S.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)

    Article  ADS  Google Scholar 

  21. Ali, M., Rau, A.R.P., Alber, G.: Quantum discord for two-qubit X states. Phys. Rev. A 81, 042105 (2010)

    Article  ADS  Google Scholar 

  22. Ali, M., Rau, A.R.P., Alber, G.: Erratum: Quantum discord for two-qubit X states [Phys. Rev. A 81, 042105 (2010)] Phys. Rev. A 82, 069902(E) (2010).

  23. Lu, X.-M., Ma, J., Xi, Z., Wang, X.: Optimal measurements to access classical correlations of two-qubit states. Phys. Rev. A 83, 012327 (2011)

    Article  ADS  Google Scholar 

  24. Chen, Q., Zhang, C., Yu, S., Yi, X.X., Oh, C.H.: Quantum discord of two-qubit X states. Phys. Rev. A 84, 042313 (2011)

    Article  ADS  Google Scholar 

  25. Luo, S.: Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77, 022301 (2008)

    Article  ADS  Google Scholar 

  26. Girolami, D., Paternostro, M., Adesso, G.: Faithful nonclassicality indicators and extremal quantum correlations in two-qubit states. J. Phys. A 44, 352002 (2011)

    Article  Google Scholar 

  27. Greenberger, D.M., Horne, M.A., Zeilinger, A.. In: Kafatos, M. (ed.) Bells theorem, quantum theory, and conceptions of the universe p. 69. Kluwer, Dordrecht (1989).

  28. Dur, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  29. Agrawal, P., Pati, A.: Perfect teleportation and superdense coding with W states. Phys. Rev. A 74, 062320 (2006)

  30. Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. Jung, E., Hwang, M.-R., Ju, Y.H., Kim, M.-S., Yoo, S.-K., Kim, H., Park, D., Son, J.-W., Tamaryan, S., Cha, S.-K.: Greenberger-Horne-Zeilinger versus W states: quantum teleportation through noisy channels. Phys. Rev. A 78, 012312 (2008)

  32. Espoukeh, P., Pedram, P.: Quantum teleportation through noisy channels with multi-qubit GHZ states. Quant. Inf. Proc. 13, 1789 (2014). arxiv:1403.1147

  33. Mahdian, M., Yousefjani, R., Salimi, S.: Quantum discord evolution of three-qubit states under noisy channels. Eur. Phys. J. D 66, 133 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We would like to thank Robabeh Rahimi for fruitful discussions and suggestions and for a critical reading of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pouria Pedram.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Espoukeh, P., Pedram, P. Quantum correlation evolution of GHZ and \(W\) states under noisy channels using ameliorated measurement-induced disturbance. Quantum Inf Process 14, 303–319 (2015). https://doi.org/10.1007/s11128-014-0846-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0846-3

Keywords

Navigation