Skip to main content
Log in

Multi-party quantum private comparison protocol based on \(d\)-dimensional entangled states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, a novel quantum private comparison protocol with \(l\)-party and \(d\)-dimensional entangled states is proposed. In the protocol, \(l\) participants can sort their secret inputs in size, with the help of a semi-honest third party. However, if every participant wants to know the relation of size among the \(l\) secret inputs, these two-participant protocols have to be executed repeatedly \(\frac{l(l-1)}{2}\) times. Consequently, the proposed protocol needs to be executed one time. Without performing unitary operation on particles, it only need to prepare the initial entanglement states and only need to measure single particles. It is shown that the participants will not leak their private information by security analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, New York, Bangalore, India, pp. 175–179 (1984)

  2. Ekert, A.K.: Quantum cryptography based on Bell theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121–3124 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Grosshans, F., Grangier, P.: Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88(5), 057902 (2002)

    Article  ADS  Google Scholar 

  5. Kent, A.: Quantum bit string commitment. Phys. Rev. Lett. 90(23), 237901 (2003)

    Article  ADS  Google Scholar 

  6. Mayers, Dominic: Unconditionally secure quantum bit commitment is impossible. Phys. Rev. Lett. 78(17), 3414–3417 (1997)

    Article  ADS  Google Scholar 

  7. Kent, A.: Unconditionally secure bit commit by transmitting measurement outcomes. Phys. Rev. Lett. 109, 130501 (2012)

    Article  ADS  Google Scholar 

  8. Liu, Y., Cao, Y., Curty, M., et al.: Experimental unconditionally secure bit commitment. Phys. Rev. Lett. 112, 010504 (2014)

    Article  ADS  Google Scholar 

  9. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  10. Tyc, T., Rowe, D.J., Sanders, B.C.: Efficient sharing of a continuous-variable quantum secret. J. Phys. A. Math. Gen. 36(27), 7625–7637 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Shi, R.H., Huang, L.S., Yang, W., Zhong, H.: Multiparty quantum secret sharing with Bell states and Bell measurements. Opt. Commun. 283(11), 2476–2480 (2010)

    Article  ADS  Google Scholar 

  12. Rahaman, R., Rahaman, M.G.: Quantum secret sharing based on local distinguishability. arXiv:1403.1097 [quant-ph] (2014)

  13. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  14. Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)

    Article  ADS  Google Scholar 

  15. Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Robust quantum secure direct communication over collective rotating channel. Commun. Theor. Phys. 53, 645C647 (2010)

    Google Scholar 

  16. Hwang, T., Lin, T.H., Kao, S.H.: Quantum Secure Direct Communication between Two Strangers. arXiv:1402.6423 [quant-ph] (2014)

  17. Jain, S., Muralidharan, S., Panigrahi, P.K.: Secure quantum conversation through non-destructive discrimination of highly entangled multipartite states. Europhys. Lett. 87(6), 60008 (2009)

  18. Yao, A.C.: Protocols for secure computations. In: Proceedings of 23rd IEEE Symposium on Foundations of Computer Science (FOCS’82), Washington, DC, USA, pp. 160–164. (1982)

  19. Goldreich, O., Micali, S., Wigderson, A.:How to play ANY mental game. In: Proceedings of the Nineteenth Annual ACM Conference on Theory of Computing. NewYork, pp. 218–229 (1987)

  20. Lo, H.K.: Insecurity of quantum secure computations. Phys. Rev. A 56, 1154–1162 (1997)

    Article  ADS  Google Scholar 

  21. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A Math. Theor. 42, 055305 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  22. Liu, W.J., Liu, C., Wang, H., et al.: Quantum private comparison: a review. IETE Tech. Rev. 30(5), 439–444 (2013)

    Article  Google Scholar 

  23. Chen, X.B., Xu, G., Niu, X.X., et al.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single particle measurement. Opt. Commun. 283(7), 1561–1565 (2010)

    Article  ADS  Google Scholar 

  24. Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11(2), 373–384 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, B., Gao, F., Jia, H.Y., et al.: Efficient quantum private comparison employing single photons and collective detection. Quantum Inf. Process. 12(2), 887–897 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Liu, W., Wang, Y.B., Jiang, Z.T.: An efficient protocol for the quantum private comparison of equality with W state. Opt. Commun. 284(12), 3160–3163 (2011)

    Article  ADS  Google Scholar 

  27. Jia, H.Y., Wen, Q.Y., Li, Y.B., Gao, F.: Quantum private comparison using genuine four particle entangled states. Int. J. Theor. Phys. 51(4), 1187–1194 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu, W., Wang, Y.B., Jiang, Z.T., Cao, Y.Z.: A protocol for the quantum private comparison of equality with type state. Int. J. Theor. Phys. 51(1), 69–77 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Liu, W., Wang, Y.B., Cui, W.: Quantum private comparison protocol based on bell entangled states. Commun. Theor. Phys. 57(4), 583–588 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Liu, W., Wang, Y.B.: Quantum private comparison based on GHZ entangled states. Int. J. Theor. Phys. 51(11), 3596–3604 (2012)

    Article  MATH  Google Scholar 

  31. Lin, S., Sun, Y., Liu, X., Yao, Z.: Quantum private comparison protocol with d-dimensional Bell states. Quantum Inf. Process. 12(1), 559–568 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Zhang, W.W., Li, D., Zhang, K., Zuo, H.: A quantum protocol for millionaire problem with Bell states. Quantum Inf. Process. 12(6), 2241–2249 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Chang, Y., Tsai, C., Hwang, T.: Multi-user private comparison protocol using GHZ class states. Quantum Inf. Process. 12(2), 1077–1088 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Liu, W., Wang, Y.B., Wang, X.M.: Multi-party quantum private comparison protocol using d-dimensional basis states without entanglement swapping. Int. J. Theor. Phys. 53(4), 1085–1091 (2014)

    Article  MATH  Google Scholar 

  35. Liu, X.S., Long, G.L., Tong, D.M., Li, F.: General scheme for super dense coding between multi-parties. Phys. Rev. A 65, 022304 (2002)

    Article  ADS  Google Scholar 

  36. Liu, B., Gao, F., Huang, W., Wen, Q.Y.: Multiparty quantum key agreement with single particles. Quantum Inf. Process. 12(4), 1797–1805 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. Sun, Z.W., Zhang, C., Wang, B.H., et al.: Improvements on multiparty quantum key agreement with single particles. Quantum Inf. Process. 12(11), 3411–3420 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. Shi, R.H., Zhong, H.: Multi-party quantum key agreement with bell states and bell measurements. Quantum Inf. Process. 12(2), 921–932 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Gupta, M., Pathak, A., Srikanth, R., et al.: General circuits for indirecting and distributing measurement in quantum computation. Int. J. Quantum Inf. 5(04), 627–640 (2007)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank associate professor Yong-bin Li, Dr. Xiao-yu Li and Dr. Fan Yang who come from UESTC for discussion and National Natural Science Foundation of China (Grant Nos. 61272175) for its support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-bin Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Qb., Yang, Gw., She, K. et al. Multi-party quantum private comparison protocol based on \(d\)-dimensional entangled states. Quantum Inf Process 13, 2343–2352 (2014). https://doi.org/10.1007/s11128-014-0805-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0805-z

Keywords

Navigation