Skip to main content
Log in

Generalized form of optimal teleportation witnesses

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a generalized form of optimal teleportation witness to demonstrate their importance in experimental detection of the larger set of entangled states useful for teleportation in higher dimensional systems. The interesting properties of our witness reveal that teleportation witness can be used to characterize mixed state entanglement using Schmidt numbers. Our results show that while every teleportation witness is also a entanglement witness, the converse is not true. Also, we show that a hermitian operator is a teleportation witness iff it is a decomposable entanglement witness. In addition, we analyze the practical significance of our study by decomposing our teleportation witness in terms of Pauli and Gell-Mann matrices, which are experimentally measurable quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)

    Article  ADS  MATH  Google Scholar 

  2. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Bennett, C.H., Divincenzo, D.: Quantum information and computation. Nature 404, 247–255 (2000)

    Article  ADS  Google Scholar 

  4. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    Article  ADS  Google Scholar 

  5. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channel. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Bouwmeester, D., Pan, J.-W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  Google Scholar 

  7. Bennett, C.H., Weisner, S.J.: Communication via one- and two- particle operators on Einstein-Podolsky-Rosen state. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Harrow, A., Hayden, P., Leung, D.: Superdense coding of quantum states. Phys. Rev. Lett. 92, 187901–187904 (2004)

    Article  ADS  Google Scholar 

  9. Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 1–8 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Terhal, B.M.: A family of indecomposable positive linear maps based on entangled quantum states. arxiv:quant-ph/9810091

  11. Ganguly, N., Adhikari, S.: Witness for edge states and its characteristics. Phys. Rev. A 80, 032331–032337 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  12. Ganguly, N., Adhikari, S., Majumdar, A.S., Chatterjee, J.: Entanglement witness operator for quantum teleportation. Phys. Rev. Lett. 107, 270501–270505 (2011)

    Article  Google Scholar 

  13. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413–1415 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Lewenstein, M., Krauss, B., Cirac, J.I., Horodecki, P.: Optimization of entanglement witnesses. Phys. Rev. A 62, 052310–052325 (2000)

    Article  ADS  Google Scholar 

  15. Guhne, O., Toth, G.: Entanglement detection. Phys. Rep. 474, 1–75 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  16. Sperling, J., Vogel, W.: Determination of the Schmidt number. Phys. Rev. A 83, 042315–042324 (2011)

    Article  ADS  Google Scholar 

  17. Woronowicz, S.L.: Positive maps of low dimensional matrix algebras. Rep. Math. Phys. 10, 165–183 (1976)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Horodecki, M., Horodecki, P., Horodecki, R.: General teleportation channel, singlet fraction, and quasidistillation. Phys. Rev. A 60, 1888–1898 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  19. Zhao, M.J., Li, Z.G., Fei, S.M., Wang, Z.X.: A note on fully entangled fraction. J. Phys. A: Math. Theor. 43, 275203 (1–7) (2010)

  20. Chruscinski, D., Kossakowski, A.: How to construct indecomposable entanglement witnesses. J. Phys. A: Math. Theor. 41, 145301 (1–11) (2008)

    Google Scholar 

  21. Verstraete, F., Verschelde, H.: Optimal teleportation with a mixed state of two qubits. Phys. Rev. Lett. 90, 097901–097904 (2003)

    Article  ADS  Google Scholar 

  22. Sanpera, A., Bruss, D., Lewenstein, M.: Schmidt-number witnesses and bound entanglement. Phys. Rev. A 63, 050301(R)–050304 (R) (2001)

    Article  ADS  Google Scholar 

  23. Bertlmann, R.A., Krammer, P.: Bloch vectors for qudits. J. Phys. A: Math. Theor. 41, 235303 (1–21) (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atul Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, A., Adhikari, S. & Agrawal, P. Generalized form of optimal teleportation witnesses. Quantum Inf Process 12, 2475–2485 (2013). https://doi.org/10.1007/s11128-013-0539-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0539-3

Keywords

Navigation