Skip to main content
Log in

Entanglement dynamics of non-inertial observers in a correlated environment

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Effect of decoherence and correlated noise on the entanglement of X-type state of the Dirac fields in the non-inertial frame is investigated. A two qubit X-state is considered to be shared between the partners where Alice is in inertial frame and Rob in an accelerated frame. The concurrence is used to quantify the entanglement of the X-state system influenced by time correlated amplitude damping, depolarizing and bit flip channels. It is seen that amplitude damping and bit flip channels heavily influence the entanglement of the system as compared to the depolarizing channel. It is found possible to avoid entanglement sudden death (ESD) for all the channels under consideration for μ > 0.75 for any type of initial state. No ESD behaviour is seen for depolarizing channel in the presence of correlated noise for entire range of decoherence parameter p and Rob’s acceleration r. It is also seen that the effect of environment is much stronger than that of acceleration of the accelerated partner. Furthermore, it is investigated that correlated noise compensates the loss of entanglement caused by the Unruh effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 18951 (1993)

    Google Scholar 

  2. Ekert A.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Bennett C.H., Brassard G., Mermin N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Grover L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325 (1997)

    Article  ADS  Google Scholar 

  5. DiVincenzo D.P.: Quantum computation. Science 270, 255 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Jakobczyk L., Jamroz A.: Noise-induced finite-time disentanglement in two-atomic system. Phys. Lett. A 333, 35–45 (2004)

    Article  ADS  MATH  Google Scholar 

  7. Yonac M. et al.: Sudden death of entanglement of two Jaynes–Cummings atoms. J. Phys. B 39, S621–S625 (2006)

    Article  ADS  Google Scholar 

  8. Ann K., Jaeger G.: Local-dephasing-induced entanglement sudden death in two-component finite-dimensional systems. Phys. Rev. A 76, 044101 (2007)

    Article  ADS  Google Scholar 

  9. Jaeger G., Ann K.: Disentanglement and decoherence in a pair of qutrits under dephasing noise. J. Mod. Opt. 54, 2327–2338 (2007)

    Article  Google Scholar 

  10. Yu T., Eberly J.H.: Qubit disentanglement and decoherence via dephasing. Phys. Rev. B 68, 165322 (2003)

    Article  ADS  Google Scholar 

  11. Yu T., Eberly J.H.: Quantum open system theory: bipartite aspects. Phys. Rev. Lett. 97, 140403 (2007)

    Article  Google Scholar 

  12. Ficek Z., Tanas R.: Delayed sudden birth of entanglement. Phys. Rev. A 77, 054301 (2008)

    Article  ADS  Google Scholar 

  13. Lopez C.E., Romero G., Lastra F., Solano E., Retamal J.C.: Sudden birth versus sudden death of entanglement in multipartite systems. Phys. Rev. Lett. 101, 080503 (2008)

    Article  ADS  Google Scholar 

  14. Alsing P.M., Milburn G.J.: Teleportation with a uniformly accelerated partner. Phys. Rev. Lett. 91, 180404 (2003)

    Article  ADS  Google Scholar 

  15. Alsing P.M., Fuentes-Schuller I., Mann R.B., Tessier T.E.: Entanglement of Dirac fields in noninertial frames. Phys. Rev. A 74, 032326 (2006)

    Article  ADS  Google Scholar 

  16. Lamata L., Martin-Delgado M.A., Solano E.: Relativity and Lorentz invariance of entanglement distillability. Phys. Rev. Lett. 97, 250502 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  17. Fuentes-Schuller I., Mann R.B.: Alice falls into a black hole: entanglement in noninertial frames. Phys. Rev. Lett. 95, 120404 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  18. Pan Q., Jing J.: Degradation of nonmaximal entanglement of scalar and Dirac fields in non-inertial frames. Phys. Rev. A 77, 024302 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  19. Wang J., Pan Q., Chen S., Jing J.: Entanglement of coupled massive scalar field in background of dilaton black hole. Phys. Lett. B 677, 186 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  20. Moradi S.: Distillability of entanglement in accelerated frames. Phys. Rev. A 79, 064301 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  21. Bruschi D.E. et al.: The Unruh effect in quantum information beyond the single-mode approximation. Phys. Rev. A 82, 042332 (2010)

    Article  ADS  Google Scholar 

  22. Hwang M.-R., Park D., Jung E.: Tripartite entanglement in a noninertial frame. Phys. Rev. A 83, 012111 (2010)

    Article  ADS  Google Scholar 

  23. Wang J., Jing J.: Multipartite entanglement of fermionic systems in noninertial frames. Phys. Rev. A 83, 022314 (2011)

    Article  ADS  Google Scholar 

  24. Wang J., Deng J., Jing J.: Classical correlation and quantum discord sharing of Dirac fields in noninertial frames. Phys. Rev. A 81, 052120 (2010)

    Article  ADS  Google Scholar 

  25. Wang J., Jing J.: Multipartite entanglement of fermionic systems in noninertial frames. Phys. Rev. A 83, 022314 (2011)

    Article  ADS  Google Scholar 

  26. Montero M., Martín-Martínez E.: Fermionic entanglement ambiguity in noninertial frames. Phys. Rev. A 83, 062323 (2011)

    Article  ADS  Google Scholar 

  27. Montero M., Martín-Martínez E.: Entanglement of arbitrary spin fields in noninertial frames. Phys. Rev. A 84, 012337 (2011)

    Article  ADS  Google Scholar 

  28. Montero M. et al.: Fermionic entanglement extinction in noninertial frames. Phys. Rev. A 84, 042320 (2011)

    Article  ADS  Google Scholar 

  29. Moradi S.: Relativity of mixed entangled states. Quantum Inf. Comput. 11, 957 (2011)

    MathSciNet  MATH  Google Scholar 

  30. Zurek W.H. et al.: Decoherence and the transition from quantum to classical. Phys. Today 44, 36 (1991)

    Article  Google Scholar 

  31. Zurek W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Wang J., Jing J.: Quantum decoherence in noninertial frames. Phys. Rev. A 82, 032324 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  33. Wang J., Jing J.: Multipartite entanglement of fermionic systems in noninertial frames. Phys. Rev. A 83, 022314 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  34. Hwang M.R. et al.: Tripartite entanglement in a noninertial frame. Phys. Rev. A 83, 012111 (2010)

    Article  ADS  Google Scholar 

  35. Zhang, W., Jing, J.: Multipartite entanglement for open system in noninertial frames. arXiv:quant-ph/1103.4903 (2011)

  36. Ramzan, M., Khan, M.K.: Decoherence and entanglement degradation of a qubit-qutrit system in non-inertial frames. Quantum Inf. Process. doi:10.1007/s11128-011-0257-7 (2011)

  37. Macchiavello C., Palma G.M.: Entanglement-enhanced information transmission over a quantum channel with correlated noise. Phys. Rev. A 65, 050301 (2002)

    Article  ADS  Google Scholar 

  38. Yeo Y., Skeen A.: Time-correlated quantum amplitude-damping channel. Phys. Rev. A 67, 064301 (2003)

    Article  ADS  Google Scholar 

  39. Karimipour V. et al.: Entanglement and optimal strings of qubits for memory channels. Phys. Rev. A 74, 062311 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  40. Bowen G., Mancini S.: Quantum channels with a finite memory. Phys. Rev. A 69, 01236 (2004)

    Google Scholar 

  41. Kretschmann D., Werner R.F.: Quantum channels with memory. Phys. Rev. A 72, 062323 (2005)

    Article  ADS  Google Scholar 

  42. Kraus K.: States, Effects and Operations: Fundamental Notions of Quantum Theory. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  43. Salles A. et al.: Experimental investigation of the dynamics of entanglement: Sudden death, complementarity, and continuous monitoring of the environment. Phys. Rev. A 78, 022322 (2008)

    Article  ADS  Google Scholar 

  44. Aspachs M. et al.: Optimal quantum estimation of the Unruh–Hawking effect. Phys. Rev. Lett 105, 151301 (2010)

    Article  ADS  Google Scholar 

  45. Martn-Martnez E. et al.: Unveiling quantum entanglement degradation near a Schwarzschild black hole. Phys. Rev. D 82, 064006 (2010)

    Article  ADS  Google Scholar 

  46. Nielson M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  47. Coffman V. et al.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)

    Article  ADS  Google Scholar 

  48. Maziero J., Werlang T., Fanchini F.F., Celeri L.C., Serra R.M.: System-reservoir dynamics of quantum and classical correlations. Phys. Rev. A 81, 022116 (2010)

    Article  ADS  Google Scholar 

  49. Wang, J., Jing, J.: System-environment dynamics of X-type states in noninertial frames. arXiv:quant-ph/1105.1216 (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ramzan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramzan, M. Entanglement dynamics of non-inertial observers in a correlated environment. Quantum Inf Process 12, 83–95 (2013). https://doi.org/10.1007/s11128-011-0354-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-011-0354-7

Keywords

Navigation