Skip to main content
Log in

Prospects for fast Rydberg gates on an atom chip

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Atom chips are a promising candidate for a scalable architecture for quantum information processing provided a universal set of gates can be implemented with high fidelity. The difficult part in achieving universality is the entangling two-qubit gate. We consider a Rydberg phase gate for two atoms trapped on a chip and employ optimal control theory to find the shortest gate that still yields a reasonable gate error. Our parameters correspond to a situation where the Rydberg blockade regime is not yet reached. We discuss the role of spontaneous emission and the effect of noise from the chip surface on the atoms in the Rydberg state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zoller P., Beth T., Binosi D., Blatt R., Briegel H., Bruss D., Calarco T., Cirac J., Deutsch D., Eisert J., Ekert A., Fabre C., Gisin N., Grangier P., Grassl M., Haroche S., Imamoglu A., Karlson A., Kempe J., Kouwenhoven L., Kröll S., Leuchs G., Lewenstein M., Loss D., Lütkenhaus N., Massar S., Mooij J., Plenio M., Polzik E., Popescu S., Rempe G., Sergienko A., Suter D., Twamley J., Wendin G., Werner R., Winter A., Wrachtrup J., Zeilinger A.: Quantum information processing and communication: strategic report on current status, visions and goals for research in Europe. Eur. Phys. J. D 36(2), 203 (2005)

    Article  ADS  Google Scholar 

  2. Nielsen M., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  3. Brennen G.K., Caves C.M., Jessen P.S., Deutsch I.H.: Quantum logic gates in optical lattices. Phys. Rev. Lett. 82(5), 1060 (1999)

    Article  ADS  Google Scholar 

  4. Jaksch D., Briegel H.J., Cirac J.I., Gardiner C.W., Zoller P.: Entanglement of atoms via cold controlled collisions. Phys. Rev. Lett. 82(9), 1975 (1999)

    Article  ADS  Google Scholar 

  5. Calarco T., Hinds E.A., Jaksch D., Schmiedmayer J., Cirac J.I., Zoller P.: Quantum gates with neutral atoms: controlling collisional interactions in time-dependent traps. Phys. Rev. A 61, 022304 (2000)

    Article  ADS  Google Scholar 

  6. Jaksch D., Cirac J.I., Zoller P., Rolston S.L., Côté R., Lukin M.D.: Fast quantum gates for neutral atoms. Phys. Rev. Lett. 85(10), 2208 (2000)

    Article  ADS  Google Scholar 

  7. Buchkremer, F.B.J., Dumke, R., Volk, M., Müther, T., Birkl, G., Ertmer, W.: Quantum information processing with microfabricated optical elements, Laser Phys. 12(4), 736 (2002) http://www.maik.ru/contents/lasphys/lasphys4_2v12cont.htm

  8. Sørensen A.S., van der Wal C.H., Childress L.I., Lukin M.D.: Capacitive coupling of atomic systems to mesoscopic conductors. Phys. Rev. Lett. 92, 063601 (2004)

    Article  ADS  Google Scholar 

  9. Cirone M.A., Negretti A., Calarco T., Krüger P., Schmiedmayer J.: A simple quantum gate with atom chips. Eur. Phys. J. D 35(1), 165 (2005)

    Article  ADS  Google Scholar 

  10. Treutlein P., Hänsch T.W., Reichel J., Negretti A., Cirone M.A., Calarco T.: Microwave potentials and optimal control for robust quantum gates on an atom chip. Phys. Rev. A 74, 022312 (2006)

    Article  ADS  Google Scholar 

  11. Müller M., Lesanovsky I., Weimer H., Buchler H.P., Zoller P.: Mesoscopic Rydberg gate based on electromagnetically induced transparency. Phys. Rev. Lett. 102, 170502 (2009)

    Article  Google Scholar 

  12. Somlói J., Kazakov V.A., Tannor D.J.: Controlled dissociation of I 2 via optical transitions between the x and b electronic states. Chem. Phys. 172, 85 (1993)

    Article  Google Scholar 

  13. Zhu W., Botina J., Rabitz H.: Rapidly convergent iteration methods for quantum optimal control of population. J. Chem. Phys. 108(5), 1953 (1998)

    Article  ADS  Google Scholar 

  14. Palao J.P., Kosloff R.: Quantum computing by an optimal control algorithm for unitary transformations. Phys. Rev. Lett. 89, 188301 (2002)

    Article  ADS  Google Scholar 

  15. Tesch C.M., de Vivie-Riedle R.: Quantum computation with vibrationally excited molecules. Phys. Rev. Lett. 89, 157901 (2002)

    Article  ADS  Google Scholar 

  16. Palao J.P., Kosloff R.: Optimal control theory for unitary transformations. Phys. Rev. A 68, 062308 (2003)

    Article  ADS  Google Scholar 

  17. Caneva T., Murphy M., Calarco T., Fazio R., Montangero S., Giovannetti V., Santoro G.E.: Optimal control at the quantum speed limit. Phys. Rev. Lett. 103, 240501 (2009)

    Article  ADS  Google Scholar 

  18. Isenhower L., Urban E., Zhang X.L., Gill A.T., Henage T., Johnson T.A., Walker T.G., Saffman M.: Demonstration of a neutral atom controlled-not quantum gate. Phys. Rev. Lett. 104, 010503 (2010)

    Article  ADS  Google Scholar 

  19. Wilk T., Gaëtan A., Evellin C., Wolters J., Miroshnychenko Y., Grangier P., Browaeys A.: Entanglement of two individual neutral atoms using Rydberg blockade. Phys. Rev. Lett. 104, 010502 (2010)

    Article  ADS  Google Scholar 

  20. Saffman M., Walker T.G., Mølmer K.: Quantum information with Rydberg atoms. Rev. Mod. Phys. 82(3), 2313 (2010)

    Article  ADS  Google Scholar 

  21. Müller, M.M., Reich, D.M., Murphy, M., Yuan, H., Vala, J., Whaley, K.B., Calarco, T., Koch, C.P.: Getting the best two-qubit gate for a real physical system (2011). ArXiv:1104.2337

  22. Goerz M.H., Calarco T., Koch C.P.: The quantum speed limit of optimal controlled phasegates for trapped neutral atoms. J. Phys. B 44, 154011 (2011)

    Article  ADS  Google Scholar 

  23. Folman R., Krüger P., Schmiedmayer J., Denschlag J.H., Henkel C.: Microscopic atom optics: from wires to an atom chip. Adv. At. Mol. Opt. Phys. 48, 263 (2002)

    Google Scholar 

  24. Fortágh J., Zimmermann C.: Magnetic microtraps for ultracold atoms. Rev. Mod. Phys. 79(1), 235 (2007)

    Article  ADS  Google Scholar 

  25. Reichel, J., Vuletić, V. (eds): Atom Chips. Wiley, Amsterdam (2011)

    Google Scholar 

  26. Kübler H., Shaffer J.P., Baluktsian T., Löw R., Pfau T.: Coherent excitation of Rydberg atoms in micrometre-sized atomic vapour cells. Nat. Photonics 4(2), 112 (2010)

    Article  ADS  Google Scholar 

  27. Tauschinsky, A., Thijssen, R.M.T., Whitlock, S., van Linden van den Heuvell, H.B., Spreeuw, R.J.C.: Spatially resolved excitation of Rydberg atoms and surface effects on an atom chip. Phys. Rev. A 81, 063411 (2011); see also the paper by V. Y. F. Leung et al. in this special issue

  28. Treutlein, P., Hommelhoff, P., Steinmetz, T., Hänsch, T.W., Reichel, J.: Coherence in microchip traps. Phys. Rev. Lett. 92, 203005 (2004). Erratum Phys. Rev. Lett. 93, 219904(E) (2004)

    Google Scholar 

  29. Gaëtan A., Miroshnychenko Y., Wilk T., Chotia A., Vitaeu M., Comparat D., Pillet P., Browaeys A., Grangier P.: Observation of collective excitation of two individual atoms in the Rydberg blockade regime. Nat. Phys. 5, 115 (2009)

    Article  Google Scholar 

  30. Kosloff R.: Propagation methods for molecular dynamics. Annu. Rev. Phys. Chem. 45, 145 (1994)

    Article  ADS  Google Scholar 

  31. Lesanovsky I., Schmelcher P.: Selected aspects of the quantum dynamics and electronic structure of atoms in magnetic microtraps. Eur. Phys. J. D 35(1), 31 (2005)

    Article  ADS  Google Scholar 

  32. Bill J., Trappe M.I., Lesanovsky I., Schmelcher P.: Resonant quantum dynamics of neutral spin-1 particles in a magnetic guide. Phys. Rev. A 73, 053609 (2006)

    Article  ADS  Google Scholar 

  33. Bartana A., Kosloff R., Tannor D.J.: Laser cooling of internal degrees of freedom. II. J. Chem. Phys. 106(4), 1435 (1997)

    Article  ADS  Google Scholar 

  34. Ohtsuki Y., Zhu W., Rabitz H.: Monotonically convergent algorithm for quantum optimal control with dissipation. J. Chem. Phys. 110(20), 9825 (1999)

    Article  ADS  Google Scholar 

  35. Palao J.P., Kosloff R., Koch C.P.: Protecting coherence in optimal control theory: state dependent constraint approach. Phys. Rev. A 77, 063412 (2008)

    Article  ADS  Google Scholar 

  36. Ndong M., Tal-Ezer H., Kosloff R., Koch C.P.: Propagator for inhomogeneous Schrödinger equations. J. Chem. Phys. 130, 124108 (2009)

    Article  ADS  Google Scholar 

  37. Saffman M., Zhang X.L., Gill A.T., Isenhower L., Walker T.G.: Rydberg state mediated quantum gates and entanglement of pairs of neutral atoms. J. Phys. Conf. Ser. 264, 012023 (2011)

    Article  ADS  Google Scholar 

  38. McGuirk J.M., Harber D.M., Obrecht J.M., Cornell E.A.: Alkali-metal adsorbate polarization on conducting and insulating surfaces probed with bose-einstein condensates. Phys. Rev. A 69, 062905 (2004)

    Article  ADS  Google Scholar 

  39. Gallagher T.F.: Rydberg atoms. Rep. Prog. Phys. 51(2), 143 (1988)

    Article  ADS  Google Scholar 

  40. Carter J.D., Martin J.D.D.: Energy shifts of Rydberg atoms due to patch fields near metal surfaces. Phys. Rev. A 83, 032902 (2011)

    Article  ADS  Google Scholar 

  41. Walker T.G., Saffman M.: Zeros of Rydberg–Rydberg Fö(r)ster interactions. J. Phys. B 38(2), S309 (2005)

    Article  ADS  Google Scholar 

  42. Lorenzen C.J., Niemax K.: Quantum defects of the n 2 p 1/2,3/2 levels in 39 K I and 85 Rb I. Phys. Scr. 27, 300 (1983)

    Article  ADS  Google Scholar 

  43. Li W., Mourachko I., Noel M., Gallagher T.: Millimeter-wave spectroscopy of cold Rb Rydberg atoms in a magneto-optical trap: quantum defects of the ns, np, and nd series. Phys. Rev. A 67, 052502 (2003)

    Article  ADS  Google Scholar 

  44. Dubessy R., Coudreau T., Guidoni L.: Electric field noise above surfaces: a model for heating rate scaling law in ion traps. Phys. Rev. A 80, 031402(R) (2009)

    Article  ADS  Google Scholar 

  45. Henkel C., Wilkens M.: Heating of trapped atoms near thermal surfaces. Europhys. Lett. 47, 414 (1999)

    Article  ADS  Google Scholar 

  46. Turchette Q.A., Kielpinski D., King B.E., Leibfried D., Meekhof D.M., Myatt C.J., Rowe M.A., Sackett C.A., Wood C.S., Itano W.M., Monroe C., Wineland D.J.: Heating of trapped ions from the quantum ground state. Phys. Rev. A 61, 063418 (2000)

    Article  ADS  Google Scholar 

  47. Labaziewicz J., Ge Y., Leibrandt D.R., Wang S.X., Shewmon R., Chuang I.L.: Temperature dependence of electric field noise above gold surfaces. Phys. Rev. Lett. 101, 180602 (2008)

    Article  ADS  Google Scholar 

  48. Leibrandt D., Yurke B., Slusher R.: Modeling ion trap thermal noise decoherence. Quantum Inf. Comput. 7(1–2), 52 (2007)

    MathSciNet  MATH  Google Scholar 

  49. Deslauriers L., Olmschenk S., Stick D., Hensinger W.K., Sterk J., Monroe C.: Scaling and suppression of anomalous quantum decoherence in ion traps. Phys. Rev. Lett. 97, 103007 (2006)

    Article  ADS  Google Scholar 

  50. Epstein R.J., Seidelin S., Leibfried D., Wesenberg J.H., Bollinger J.J., Amini J.M., Blakestad R.B., Britton J., Home J.P., Itano W.M., Jost J.D., Knill E., Langer C., Ozeri R., Shiga N., Wineland D.J.: Simplified motional heating rate measurements of trapped ions. Phys. Rev. A 76, 033411 (2007)

    Article  ADS  Google Scholar 

  51. Daniilidis N., Narayanan S., Möller S.A., Clark R., Lee T.E., Leek P.J., Wallraff A., Schulz S., Schmidt-Kaler F., Häffner H.: Fabrication and heating rate study of microscopic surface electrode ion traps. New J. Phys. 13, 013032 (2011)

    Article  ADS  Google Scholar 

  52. Purcell E.M.: Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946)

    Article  Google Scholar 

  53. Crosse, J.A., Ellingsen, S.Å., Clements, K., Buhmann, S.Y., Scheel, S.: Thermal Casimir-Polder shifts in Rydberg atoms near metallic surfaces, Phys. Rev. A 82, 010901(R) (2010). Erratum Phys. Rev. A 82, 029902 (2010)

    Google Scholar 

  54. Ellingsen S.A., Buhmann S.Y., Scheel S.: Temperature-invariant Casimir-Polder forces despite large thermal photon numbers. Phys. Rev. Lett. 104, 223003 (2010)

    Article  ADS  Google Scholar 

  55. Theodosiou C.E.: Lifetimes of alkali-metal-atom Rydberg states. Phys. Rev. A 30(6), 2881 (1984)

    Article  ADS  Google Scholar 

  56. Wylie J.M., Sipe J.E.: Quantum electrodynamics near an interface. Phys. Rev. A 30(3), 1185 (1984)

    Article  ADS  Google Scholar 

  57. Failache H., Saltiel S., Fischer A., Bloch D., Ducloy M.: Resonant quenching of gas-phase Cs atoms induced by surface polaritons. Phys. Rev. Lett. 88, 243603 (2002)

    Article  ADS  Google Scholar 

  58. Hyafil P., Mozley J., Perrin A., Tailleur J., Nogues G., Brune M., Raimond J.M., Haroche S.: Coherence-preserving trap architecture for long-term control of giant Rydberg atoms. Phys. Rev. Lett. 93, 103001 (2004)

    Article  ADS  Google Scholar 

  59. Courtois J.Y., Courty J.M., Mertz J.C.: Internal dynamics of multilevel atoms near a vacuum-dielectric interface. Phys. Rev. A 53, 1862 (1996)

    Article  ADS  Google Scholar 

  60. Eberlein C., Robaschik D.: Inadequacy of perfect-reflector models in cavity qed for systems with low-frequency excitations. Phys. Rev. Lett. 92, 233602 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Henkel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, M.M., Haakh, H.R., Calarco, T. et al. Prospects for fast Rydberg gates on an atom chip. Quantum Inf Process 10, 771 (2011). https://doi.org/10.1007/s11128-011-0296-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-011-0296-0

Keywords

Navigation