Skip to main content
Log in

Triton X-100 as an effective surfactant for the isolation and purification of photosystem I from Arthrospira platensis

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Surfactants play important roles in the preparation, structural, and functional research of membrane proteins, and solubilizing and isolating membrane protein, while keeping their structural integrity and activity intact is complicated. The commercial n-Dodecyl-β-D-maltoside (DDM) and Triton X-100 (TX) were used as solubilizers to extract and purify trimeric photosystem I (PSI) complex, an important photosynthetic membrane protein complex attracting broad interests. With an optimized procedure, TX can be used as an effective surfactant to isolate and purify PSI, as a replace of the much more expensive DDM. A mechanism was proposed to interpret the solubilization process at surfactant concentrations lower than the critical solubilization concentration. PSI-TX and PSI-DDM had identical polypeptide bands, pigment compositions, oxygen consumption, and photocurrent activities. This provides an alternative procedure and paves a way for economical and large-scale trimeric PSI preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

PSI:

Photosystem I

DDM:

n-Dodecyl-β-D-maltoside

TX:

Triton X-100

CD:

Circular dichroism

CMC:

Critical micelle concentration

CSC:

Critical solubilization concentration

Chl:

Chlorophyll

Phe:

Pheophytin

PSI-DDM:

PSI isolated and purified by DDM

PSI-TX:

PSI isolated and purified by TX

PSI-DSSC:

PSI-sensitized solar cell

HPLC:

High performance liquid chromatography

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

A. platensis :

Arthrospira platensis (old name: Spirulina platensis)

References

  • Andrizhiyevskaya E, Chojnicka A, Bautista J, Diner B, van Grondelle R, Dekker J (2005) Origin of the F685 and F695 fluorescence in Photosystem II. Photosynth Res 84 (1-3):173-180. doi:http://dx.doi.org/10.1007/s11120-005-0478-7

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta Vulgaris. Plant Physiol 24 (1):1-15. doi:http://dx.doi.org/10.1104/pp.24.1.1

  • Burke JJ, Ditto CL, Arntzen CJ (1978) Involvement of the light-harvesting complex in cation regulation of excitation energy distribution in chloroplasts. Archives of Biochemistry and Biophysics 187 (1):252-263. doi:http://dx.doi.org/10.1016/0003-9861(78)90031-0

  • Chitnis VP, Chitnis PR (1993) PsaL subunit is required for the formation of photosystem I trimers in the cyanobacterium Synechocystis sp. PCC 6803. FEBS Letters 336 (2):330-334. doi:http://dx.doi.org/10.1016/0014-5793(93)80831-E

  • Collini E, Wong CY, Wilk KE, Curmi PMG, Brumer P, Scholes GD (2010) Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463 (7281):644-647. doi:http://dx.doi.org/10.1038/nature08811

    Google Scholar 

  • Fromme P, Witt HT (1998) Improved isolation and crystallization of photosystem I for structural analysis. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1365 (1–2):175-184. doi:http://dx.doi.org/10.1016/S0005-2728(98)00059-0

  • Giardi MT, Pace E (2005) Photosynthetic proteins for technological applications. Trends in Biotechnology 23 (5):257-263. doi:http://dx.doi.org/10.1016/j.tibtech.2005.03.003

    Google Scholar 

  • Grätzel M (2001) Photoelectrochemical cells. Nature 414 (6861):338-344. doi:http://dx.doi.org/10.1038/35104607

  • Gunther D, LeBlanc G, Prasai D, Zhang JR, Cliffel DE, Bolotin KI, Jennings GK (2013) Photosystem I on Graphene as a Highly Transparent, Photoactive Electrode. Langmuir 29 (13):4177-4180. doi:http://dx.doi.org/10.1021/la305020c

  • Hui Y, Jie W, Carpentier R (2000) Degradation of the Photosystem I Complex During Photoinhibition. Photochemistry and Photobiology 72 (4):508-512. doi:http://dx.doi.org/10.1562/0031-8655(2000)0720508DOTPIC2.0.CO2

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauß N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411 (6840):909-917. doi:http://dx.doi.org/doi:10.1038/35082000

    Google Scholar 

  • Karapetyan NV, Dorra D, Schweitzer G, Bezsmertnaya IN, Holzwarth AR (1997) Fluorescence Spectroscopy of the Longwave Chlorophylls in Trimeric and Monomeric Photosystem I Core Complexes from the Cyanobacterium Spirulina platensis. Biochemistry 36 (45):13830-13837. doi:http://dx.doi.org/10.1021/bi970386z

  • Kargul J, Janna Olmos JD, Krupnik T (2012) Structure and function of photosystem I and its application in biomimetic solar-to-fuel systems. Journal of Plant Physiology 169 (16):1639-1653. doi:http://dx.doi.org/10.1016/j.jplph.2012.05.018

  • Krassen H, Schwarze A, Friedrich Br, Ataka K, Lenz O, Heberle J (2009) Photosynthetic Hydrogen Production by a Hybrid Complex of Photosystem I and [NiFe]-Hydrogenase. ACS Nano 3 (12):4055-4061. doi:http://dx.doi.org/10.1021/nn900748j

  • Kruip J, Karapetyan NV, Terekhova IV, Rögner M (1999) In Vitro Oligomerization of a Membrane Protein Complex: Liposome-based reconstitution of trimeric photosystem I from isolated monomers. Journal of Biological Chemistry 274 (26):18181-18188. doi:http://dx.doi.org/10.1074/jbc.274.26.18181

    Google Scholar 

  • Kühlbrandt W, Thaler T, Wehrli E (1983) The structure of membrane crystals of the light-harvesting chlorophyll a/b protein complex. The Journal of cell biology 96 (5):1414-1424. doi:http://jcb.rupress.org/content/96/5/1414.full.pdf

  • Lichtenthaler HK, Buschmann C (2001) Chlorophylls and carotenoids: Measurement and characterization by UV-VIS spectroscopy. In: Current Protocols in Food Analytical Chemistry. John Wiley & Sons, Inc. doi:http://dx.doi.org/10.1002/0471142913.faf0403s01

  • Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X, Chang W (2004) Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428 (6980):287-292. doi:http://dx.doi.org/10.1038/nature02373

    Google Scholar 

  • Liu S, Qiu Y, Yu D (2010) The effect of amphiphilic peptide surfactants on the light-harvesting complex II. Photosynthetica 48 (4):610-616. doi:http://dx.doi.org/10.1007/s11099-010-0078-4

    Google Scholar 

  • Matsumoto K, Vaughn M, Bruce BD, Koutsopoulos S, Zhang S (2009) Designer Peptide Surfactants Stabilize Functional Photosystem-I Membrane Complex in Aqueous Solution for Extended Time. The Journal of Physical Chemistry B 113 (1):75-83. doi:http://dx.doi.org/10.1021/jp8021425

  • Matsumoto K, Zhang S, Koutsopoulos S (2010) Enhanced Electron Transfer Activity of Photosystem I by Polycations in Aqueous Solution. Biomacromolecules 11 (11):3152-3157. doi:http://dx.doi.org/10.1021/bm100950g

  • Mershin A, Matsumoto K, Kaiser L, Yu D, Vaughn M, Nazeeruddin MK, Bruce BD, Graetzel M, Zhang S (2012) Self-assembled photosystem-I biophotovoltaics on nanostructured TiO2 and ZnO. Sci Rep 2. doi:http://dx.doi.org/10.1038/srep00234

  • Nakamura A, Akai M, Yoshida E, Taki T, Watanabe T (2003) Reversed-phase HPLC determination of chlorophyll a’ and phylloquinone in Photosystem I of oxygenic photosynthetic organisms. European Journal of Biochemistry 270 (11):2446-2458. doi:http://dx.doi.org/10.1046/j.1432-1033.2003.03616.x

    Google Scholar 

  • Nelson N, Ben-Shem A (2004) The complex architecture of oxygenic photosynthesis. Nat Rev Mol Cell Biol 5 (12):971-982. doi:http://dx.doi.org/doi:10.1038/nrm1525

    Google Scholar 

  • Privé GG (2007) Detergents for the stabilization and crystallization of membrane proteins. Methods 41 (4):388-397. doi:http://dx.doi.org/10.1016/j.ymeth.2007.01.007

  • Reithmeier RAF (2007) Structural biology of membrane proteins. Methods 41 (4):353-354. doi:http://dx.doi.org/10.1016/j.ymeth.2007.02.016

    Google Scholar 

  • Schlodder E, Çetin M, Byrdin M, Terekhova IV, Karapetyan NV (2005) P700+- and 3P700-induced quenching of the fluorescence at 760 nm in trimeric Photosystem I complexes from the cyanobacterium Arthrospira platensis. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1706 (1–2):53-67. doi:http://dx.doi.org/10.1016/j.bbabio.2004.08.009

  • Shubin VV, Bezsmertnaya IN, Karapetyan NV (1992) Isolation from Spirulina membranes of two photosystem I-type complexes, one of which contains chlorophyll responsible for the 77 K fluorescence band at 760 nm. FEBS Letters 309 (3):340-342. doi:http://dx.doi.org/10.1016/0014-5793(92)80803-O

  • Shubin VV, Tsuprun VL, Bezsmertnaya IN, Karapetyan NV (1993) Trimeric forms of the photosystem I reaction center complex pre-exist in the membranes of the cyanobacterium Spirulina platensis. FEBS Letters 334 (1):79-82. doi:http://dx.doi.org/10.1016/0014-5793(93)81685-S

  • Standfuss J, Terwisscha van Scheltinga AC, Lamborghini M, Kühlbrandt W (2005) Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 Å resolution. EMBO J 24 (5):919-928. doi:http://dx.doi.org/10.1038/sj.emboj.7600585

  • Terasaki N, Yamamoto N, Hattori M, Tanigaki N, Hiraga T, Ito K, Konno M, Iwai M, Inoue Y, Uno S, Nakazato K (2009) Photosensor Based on an FET Utilizing a Biocomponent of Photosystem I for Use in Imaging Devices. Langmuir 25 (19):11969-11974. doi:http://dx.doi.org/10.1021/la901091e

    Google Scholar 

  • Yang Z, Su X, Wu F, Gong Y, Kuang T (2005) Effect of phosphatidylglycerol on molecular organization of photosystem I. Biophysical Chemistry 115 (1):19-27. doi:http://dx.doi.org/10.1016/j.bpc.2005.01.004

    Google Scholar 

  • Yu D, Huang F, Xu H (2012) Determination of critical concentrations by synchronous fluorescence spectrometry. Analytical Methods 4 (1):47-49. doi:http://dx.doi.org/10.1039/C1AY05495C

  • Yu D, Zhu G, Liu S, Ge B, Huang F (2013) Photocurrent activity of light-harvesting complex II isolated from spinach and its pigments in dye-sensitized TiO2 solar cell. International Journal of Hydrogen Energy 38 (36):16740-16748. doi:http://dx.doi.org/10.1016/j.ijhydene.2013.02.114

Download references

Acknowledgments

The authors thank Prof. Barry D. Bruce for comments and discussions. The authors appreciate the financial support by the Shandong Provincial Natural Science Foundation (ZR2010BL008), the National Natural Science Foundation of China (21033005, 21073236, 31100263), and the program for New Century Excellent Talents in University of Ministry of Education of China (NCET-10-0815), the Natural Science Foundation for Distinguished Young Scholar of Shandong Province (JQ201008), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daoyong Yu or Fang Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1087 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, D., Huang, G., Xu, F. et al. Triton X-100 as an effective surfactant for the isolation and purification of photosystem I from Arthrospira platensis . Photosynth Res 120, 311–321 (2014). https://doi.org/10.1007/s11120-014-9988-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-014-9988-5

Keywords

Navigation