Skip to main content
Log in

Accounting for the decrease of photosystem photochemical efficiency with increasing irradiance to estimate quantum yield of leaf photosynthesis

  • Technical Communication
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Maximum quantum yield for leaf CO2 assimilation under limiting light conditions (Φ CO2LL) is commonly estimated as the slope of the linear regression of net photosynthetic rate against absorbed irradiance over a range of low-irradiance conditions. Methodological errors associated with this estimation have often been attributed either to light absorptance by non-photosynthetic pigments or to some data points being beyond the linear range of the irradiance response, both causing an underestimation of Φ CO2LL. We demonstrate here that a decrease in photosystem (PS) photochemical efficiency with increasing irradiance, even at very low levels, is another source of error that causes a systematic underestimation of Φ CO2LL. A model method accounting for this error was developed, and was used to estimate Φ CO2LL from simultaneous measurements of gas exchange and chlorophyll fluorescence on leaves using various combinations of species, CO2, O2, or leaf temperature levels. The conventional linear regression method under-estimated Φ CO2LL by ca. 10–15 %. Differences in the estimated Φ CO2LL among measurement conditions were generally accounted for by different levels of photorespiration as described by the Farquhar-von Caemmerer–Berry model. However, our data revealed that the temperature dependence of PSII photochemical efficiency under low light was an additional factor that should be accounted for in the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

A :

Net rate of leaf photosynthesis

C a :

CO2 level in the ambient air

C c :

CO2 level in the carboxylation sites of Rubisco

e :

Electron

FvCB:

Farquhar, von Caemmerer, Berry

I abs :

Absorbed irradiance by leaf photosynthetic pigments

I inc :

Incident irradiance

MPF:

Multiphase flash

PS:

Photosystem

R d :

Rate of leaf respiration in the light or ‘day respiration’

R dk :

Rate of leaf respiration in the darkness

RuBP:

Ribulose-1,5-biphosphate

s′:

Slope factor for linear regression of A versus I inc Φ 2/4

s :

Slope factor for linear regression of A versus I inc Φ 2/4 under non-photorespiratory conditions

S c/o :

Relative CO2/O2 specificity of Rubisco

SP:

Single saturation pulse

β :

Ratio of I abs to I inc

ρ 2 :

The fraction of I abs that is partitioned to PSII

Φ 1 :

Photochemical efficiency of PSI

Φ 1LL :

Photochemical efficiency of PSI under strictly limiting light

Φ 2 :

Photochemical efficiency of PSII

Φ 2LL :

Photochemical efficiency of PSII under strictly limiting light

Φ CO2LL :

Quantum yield of photosynthetic CO2 uptake

Φ CO2LL(inc) :

Quantum yield of photosynthetic CO2 uptake on the basis of incident light

Γ * :

CO2 compensation point in the absence of R d

References

  • Archontoulis SV, Yin X, Vos J, Danalatos NG, Struik PC (2012) Leaf photosynthesis and respiration of three bioenergy crops in relation to temperature and leaf nitrogen: how conserved are biochemical model parameters among crop species? J Exp Bot 63:895–911

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bernacchi CJ, Singsaas EL, Pimentel C, Portis AR Jr, Long SP (2001) Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant Cell Environ 24:253–259

    Article  CAS  Google Scholar 

  • Bernacchi CJ, Portis AR, Nakano H, von Caemmerer S, Long SP (2002) Temperature response of mesophyll conductance. Implication for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo. Plant Physiol 130:1992–1998

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bernacchi CJ, Pimentel C, Long SP (2003) In vivo temperature response functions of parameters required to model RuBP-limited photosynthesis. Plant Cell Environ 26:1419–1430

    Article  CAS  Google Scholar 

  • Berry JA, Björkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol 31:491–594

    Article  Google Scholar 

  • Björkman O, Demmig B (1987) Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170:489–504

    Article  PubMed  Google Scholar 

  • Collatz GJ, Berry JA, Clark JS (1998) Effects of climate and atmospheric CO2 partial pressure on the global distribution of C4 grasses: present, past, and future. Oecologia 114:441–454

    Article  Google Scholar 

  • Demmig AB, Moeller DL, Logan BA, Adams WW III (1998) Positive correlation between levels of retained zeaxanthin plus antheraxanthin and degree of photoinhibition in shade leaves of Schefflera arboricola (Hayata) Merrill. Planta 205:367–374

    Article  Google Scholar 

  • Earl HJ, Ennahli S (2004) Estimating photosynthetic electron transport via chlorophyll fluorometry without Photosystem II light saturation. Photosynth Res 82:177–186

    Article  CAS  PubMed  Google Scholar 

  • Edwards GE, Baker NR (1993) Can assimilation in maize leaves be predicted accurately from chlorophyll fluorescence analysis? Photosynth Res 37:89–102

    Article  CAS  PubMed  Google Scholar 

  • Ehleringer J, Björkman O (1977) Quantum yields for CO2 uptake in C3 and C4 plants. Dependence on temperature, CO2, and O2 concentration. Plant Physiol 59:86–90

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ehleringer J, Pearcy RW (1983) Variation in quantum yield for CO2 uptake among C3 and C4 plants. Plant Physiol 73:555–559

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Emerson R (1958) The quantum yield of photosynthesis. Annu Rev Plant Physiol 9:1–24

    Article  CAS  Google Scholar 

  • Evans JR (1987) The dependence of quantum yield on wavelength and growth irradiance. Aust J Plant Physiol 14:69–79

    Article  Google Scholar 

  • Farquhar GD (1983) On the nature of carbon isotope discrimination in C4 species. Aust J Plant Physiol 10:205–226  

  • Farquhar GD, Wong SC (1984) An empirical model of stomatal conductance. Aust J Plant Physiol 11:191–210

    Article  CAS  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Diaz-Espejo A, Galmes J, Kaldenhoff R, Medrano H, Ribas-Carbό M (2007) Rapid variation of mesophyll conductance in response to changes in CO2 concentration around leaves. Plant Cell Environ 30:1284–1298

    Article  CAS  PubMed  Google Scholar 

  • Genty B, Harbinson J (1996) Regulation of light utilization for photosynthetic electron transport. In: Baker NR (ed) Photosynthesis and the environment, vol 5., Advances in photosynthesis and respirationKluwer Academic Publishers, Dordrecht, pp 67–99

    Chapter  Google Scholar 

  • Genty B, Briantais J-M, Baker N (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    Article  CAS  Google Scholar 

  • Harbinson J, Genty B, Baker NR (1989) Relationship between the quantum efficiencies of Photosystems I and II in pea leaves. Plant Physiol 90:1029–1034

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harley PC, Weber JA, Gates DM (1985) Interactive effects of light, leaf temperature, CO2 and O2 on photosynthesis in soybean. Planta 165:249–263

    Article  CAS  PubMed  Google Scholar 

  • Johnson Z, Barber RT (2003) The low-light reduction in the quantum yield of photosynthesis: potential errors and biases when calculating the maximum quantum yield. Photosynth Res 75:85–95

    Article  CAS  PubMed  Google Scholar 

  • Kok B (1948) A critical consideration of the quantum yield of Chlorella-photosynthesis. Enzymologia 13:1–56

    CAS  Google Scholar 

  • Ku S-B, Edwards GE (1978) Oxygen inhibition of photosynthesis. III. Temperature dependence of quantum yield and its relation to O2/CO2 solubility ratio. Planta 140:1–6

    Article  CAS  PubMed  Google Scholar 

  • Lal A, Edwards GE (1995) Maximum quantum yields of O2 evolution in C4 plants under high CO2. Plant Cell Physiol 36:1311–1317

    CAS  Google Scholar 

  • Long SP, Postl WF, Bolhár-Nordenkampf HR (1993) Quantum yields for uptake of carbon dioxide in C3 vascular plants of contrasting habitats and taxonomic groupings. Planta 189:226–234

    Article  CAS  Google Scholar 

  • Loriaux SD, Avenson TJ, Wells JM, McDermitt DK, Eckles RD, Riensche B, Genty B (2013) Closing in on maximum yield of chlorophyll fluorescence using a single multiphase flash of sub-saturating intensity. Plant Cell Environ 36:1755–1770

    Article  CAS  PubMed  Google Scholar 

  • McCree KJ (1972) The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agric Meteorol 9:191–216

    Article  Google Scholar 

  • Monson RK, Littlejohn RO Jr, Williams GJ III (1982a) The quantum yield for CO2 uptake in C3 and C4 grasses. Photosynth Res 3:153–159

    Article  CAS  PubMed  Google Scholar 

  • Monson RK, Stidham MA, Williams GJ III, Edwards GE, Uribe EG (1982b) Temperature dependence of photosynthesis in Agropyron smithii Rydb. I. Factors affecting net CO2 uptake in intact leaves and contribution from ribulose-1,5-bisphosphate carboxylase measured in vivo and in vitro. Plant Physiol 69:921–928

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moon BY, Higashi SI, Gombos Z, Murata N (1995) Unsaturation of the membrane lipids of chloroplasts stabilizes the photosynthetic machinery against low-temperature photoinhibition in transgenic tobacco plants. Proc Natl Acad Sci USA 92:6219–6223

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morales F, Abadía A, Abadía J (1991) Chlorophyll fluorescence and photon yield of oxygen evolution in iron-deficient sugar beet (Beta vulgaris L.) leaves. Plant Physiol 97:886–893

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ögren E (1993) Convexity of the photosynthetic light-response curve in relation to intensity and direction of light during growth. Plant Physiol 101:1013–1019

    PubMed Central  PubMed  Google Scholar 

  • Osborne BA, Garrett MK (1983) Quantum yields for CO2 uptake in some diploid and tetraploid plant species. Plant Cell Environ 6:135–144

    Article  CAS  Google Scholar 

  • Schreiber U, Hormann H, Neubauer C, Klughammer C (1995) Assessment of photosystem II photochemical quantum yield by chlorophyll fluorescence quenching analysis. Aust J Plant Physiol 22:209–220

    Article  CAS  Google Scholar 

  • Seaton GGR, Walker DA (1990) Chlorophyll fluorescence as a measure of photosynthetic carbon assimilation. Proc R Soc Lond B Biol Sci 242:29–35

    Article  Google Scholar 

  • Sharp RE, Matthews MA, Boyer JS (1984) Kok effect and the quantum yield of photosynthesis. Light partially inhibits dark respiration. Plant Physiol 75:95–101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Singsaas EL, Ort DR, Delucia EH (2001) Variation in measured values of photosynthetic quantum yield in ecophysiological studies. Oecologia 128:15–23

    Article  Google Scholar 

  • Skillman JB (2008) Quantum yield variation across the three pathways of photosynthesis: not yet out of the dark. J Exp Bot 59:1647–1661

    Article  CAS  PubMed  Google Scholar 

  • van Oijen M, Dreccer MF, Firsching K-H, Schnieders BJ (2004) Simple equations for dynamic models of the effects of CO2 and O3 on light use efficiency and growth of crops. Ecol Model 179:39–60

    Article  Google Scholar 

  • von Caemmerer S (2000) Biochemical models of leaf photosynthesis, vol 2. CSIRO Publishing, Collingwood

    Google Scholar 

  • Walker B, Ariza LS, Kaines S, Badger MR, Cousins AB (2013) Temperature response of in vivo Rubisco kinetics and mesophyll conductance in Arabidopsis thaliana: comparisons to Nicotiana tabacum. Plant Cell Environ 36:2108–2119

    Article  CAS  PubMed  Google Scholar 

  • Yin X, Struik PC (2012) Mathematical review of the energy transduction stoichiometries of C4 leaf photosynthesis under limiting light. Plant Cell Environ 35:1299–1312

    Article  CAS  PubMed  Google Scholar 

  • Yin X, van Oijen M, Schapendonk AHCM (2004) Extension of a biochemical model for the generalized stoichiometry of electron transport limited C3 photosynthesis. Plant Cell Environ 27:1211–1222

    Article  CAS  Google Scholar 

  • Yin X, Harbinson J, Struik PC (2006) Mathematical review of literature to assess alternative electron transports and interphotosystem excitation partitioning of steady-state C3 photosynthesis under limiting light. Plant Cell Environ 29:1771–1782 with corrigendum in 29: 2252

    Article  CAS  PubMed  Google Scholar 

  • Yin X, Struik PC, Romero P, Harbinson J, Evers JB, van der Putten PEL, Vos J (2009) Using combined measurements of gas exchange and chlorophyll fluorescence to estimate parameters of a biochemical C3 photosynthesis model: a critical appraisal and a new integrated approach applied to leaves in a wheat (Triticum aestivum) canopy. Plant Cell Environ 32:448–464

    Article  CAS  PubMed  Google Scholar 

  • Yin X, Sun Z, Struik PC, Gu J (2011) Evaluating a new method to estimate the rate of leaf respiration in the light by analysis of combined gas exchange and chlorophyll fluorescence measurements. J Exp Bot 62:3489–3499

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This project was partially carried out within the research program of BioSolar Cells, co-financed by the Dutch Ministry of Economic Affairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinyou Yin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 360 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, X., Belay, D.W., van der Putten, P.E.L. et al. Accounting for the decrease of photosystem photochemical efficiency with increasing irradiance to estimate quantum yield of leaf photosynthesis. Photosynth Res 122, 323–335 (2014). https://doi.org/10.1007/s11120-014-0030-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-014-0030-8

Keywords

Navigation