Skip to main content

Advertisement

Log in

Gaps in knowledge and data driving uncertainty in models of photosynthesis

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Regional and global models of the terrestrial biosphere depend critically on models of photosynthesis when predicting impacts of global change. This paper focuses on identifying the primary data needs of these models, what scales drive uncertainty, and how to improve measurements. Overall, there is a need for an open, cross-discipline database on leaf-level photosynthesis in general, and response curves in particular. The parameters in photosynthetic models are not constant through time, space, or canopy position but there is a need for a better understanding of whether relationships with drivers, such as leaf nitrogen, are themselves scale dependent. Across time scales, as ecosystem models become more sophisticated in their representations of succession they needs to be able to approximate sunfleck responses to capture understory growth and survival. At both high and low latitudes, photosynthetic data are inadequate in general and there is a particular need to better understand thermal acclimation. Simple models of acclimation suggest that shifts in optimal temperature are important. However, there is little advantage to synoptic-scale responses and circadian rhythms may be more beneficial than acclimation over shorter timescales. At high latitudes, there is a need for a better understanding of low-temperature photosynthetic limits, while at low latitudes the need is for a better understanding of phosphorus limitations on photosynthesis. In terms of sampling, measuring multivariate photosynthetic response surfaces are potentially more efficient and more accurate than traditional univariate response curves. Finally, there is a need for greater community involvement in model validation and model-data synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albani M, Medvigy DM, Hurtt GC, Moorcroft PR (2006) The contributions of land-use change, CO2 fertilization, and climate variability to the Eastern US carbon sink. Glob Change Biol 12(12):2370–2390. doi:10.1111/j.1365-2486.2006.01254.x

    Article  Google Scholar 

  • Amthor J (2000) The McCree–de Wit–Penning de Vries–Thornley Respiration Paradigms: 30 years later. Ann Bot 86(1):1–20. doi:10.1006/anbo.2000.1175

    Article  CAS  Google Scholar 

  • Asner GP, Martin RE (2009) Airborne spectranomics: mapping canopy chemical and taxonomic diversity in tropical forests. Front Ecol Environ 7(5):269–276. doi:10.1890/070152

    Article  Google Scholar 

  • Bernacchi CJ, Rosenthal DM, Pimentel C, Long SP, Farquhar GD (2009) Modeling the temperature dependence of C3 photosynthesis. In: Laisk A, Nedbal L, Govindjee (eds) Photosynthesis in silico: understanding complexity from molecules to ecosystems, vol 29. Springe, Netherlands, pp 231–246

    Chapter  Google Scholar 

  • Berry JA, Beerling DJ, Franks PJ (2010) Stomata: key players in the earth system, past and present. Curr Opin Plant Biol 13(3):233–240. doi:10.1016/j.pbi.2010.04.013

    PubMed  Google Scholar 

  • Bonan B, Lawrence PJ, Oleson KW, Levis S, Jung M, Reichstein M, Lawrence DM, Swenson SC (2011) Improving canopy processes in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data. J Geophy Res 116(G2):1–22. doi:10.1029/2010JG001593

    Google Scholar 

  • Bonan GB, Oleson KW, Fisher RA, Lasslop G, Reichstein M (2012) Reconciling leaf physiological traits and canopy flux data use of the TRY and FLUXNET databases in the Community Land Model version 4. J Geophys Res 117(25C):1–19. doi:10.1029/2011JG001913

    Google Scholar 

  • Booth BBB, Jones CD, Collins M, Totterdell IJ, Cox PM, Sitch S, Huntingford C et al (2012). High sensitivity of future global warming to land carbon cycle processes. Environ Lett, 024002. doi:10.1088/1748-9326/7/2/024002

  • Clark JS (2005) Why environmental scientists are becoming bayesians. Ecol Lett 8(1):2–14. doi:10.1111/j.1461-0248.2004.00702.x

    Article  Google Scholar 

  • Clark JS, Dietze MC, Chakraborty S, Agarwal PK, Wolosin MS, Ibanez I, LaDeau S (2007) Resolving the biodiversity paradox. Ecol Lett 10(8):647–659. doi:10.1111/j.1461-0248.2007.01041.x discussion 659–62

    Article  PubMed  Google Scholar 

  • Davidson CD (2012) The modeled effects of fire on carbon balance and vegetation abundance in Alaskan Tundra. University of Illinois, Urbana-Champaign, p 163

  • De Kauwe MG et al (2013) Forest water use and water use efficiency at elevated CO2: a model-data intercomparison at two contrasting temperate forest FACE sites. Glob Change Biol (in press). doi:10.1111/gcb.12164

  • Dietze MC, Clark JS (2008) Changing the gap dynamics paradigm: vegetative regeneration control on forest response to disturbance. Ecol Monogr 78(3):331–347. doi:10.1890/07-0271.1

    Article  Google Scholar 

  • Dietze M et al (2011) Characterizing the performance of ecosystem models across time scales: A spectral analysis of the North American carbon program site-level synthesis. J Geophys Res 116:1–15. doi:10.1029/2011JG001661

    Google Scholar 

  • Dietze MC, LeBauer D, Kooper R (2013) On improving the communication between models and data. Plant Cell Environ (in press). doi:10.1111/pce.12043

  • Dios VR et al (2012) Endogenous circadian regulation of carbon dioxide exchange in terrestrial ecosystems. Glob Change Biol 18(6):1956–1970. doi:10.1111/j.1365-2486.2012.02664.x

    Article  Google Scholar 

  • Dubois J-JB, Fiscus EL, Booker FL, Flowers MD, Reid CD (2007) Optimizing the statistical estimation of the parameters of the Farquhar-von Caemmerer-Berry model of photosynthesis. New phytol 176(2):402–414. doi:10.1111/j.1469-8137.2007.02182.x

    Article  PubMed  Google Scholar 

  • Ellis RJ (1979) The most abundant protein in the world. Trends Biochem Sci 4(11):241–244. doi:10.1016/0968-0004(79)90212-3

    Article  CAS  Google Scholar 

  • Farquhar G, Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149(1):78–90

    Article  CAS  PubMed  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (2001) Models of photosynthesis. Plant physiol 125(1):42–45

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Foster DR, Aber JD (2006) Forests in time: the environmental consequences of 1000 years of change in New England. Yale University Press, New Haven

    Google Scholar 

  • Foster D, Swanson F, Aber J, Burke I, Brokaw N, Tilman D, Knapp A (2003) The importance of land-use legacies to ecology and conservation. Bioscience 53(1):77. doi:10.1641/0006-3568

    Article  Google Scholar 

  • Friend AD (2010) Terrestrial plant production and climate change. J Exp Bot 61(5):1293–1309. doi:10.1093/jxb/erq019

    Article  CAS  PubMed  Google Scholar 

  • Goll DS, Brovkin V, Parida BR, Reick CH, Kattge J, Reich PB, Van Bodegom PM et al (2012) Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling. Biogeosciences 9(9):3547–3569. doi:10.5194/bg-9-3547-2012

    Article  CAS  Google Scholar 

  • Gross LJ, Kirschbaum MUF, Pearcy RW (1991) A dynamic model of photosynthesis in varying light taking account of stomatal conductance, C3-cycle intermediates, photorespiration and Rubisco activation. Plant Cell Environ 14:881–893. doi:10.1111/j.1365-3040.1991.tb00957.x

    Article  CAS  Google Scholar 

  • Gu L, Pallardy SG, Tu K, Law BE, Wullschleger SD (2010) Reliable estimation of biochemical parameters from C3 leaf photosynthesis-intercellular carbon dioxide response curves. Plant Cell Environ 33(11):1852–1874. doi:10.1111/j.1365-3040.2010.02192.x

    Article  CAS  PubMed  Google Scholar 

  • Harmer SL (2009) The circadian system in higher plants. Annu Rev Plant Biol 60:357–377. doi:10.1146/annurev.arplant.043008.092054

    Article  CAS  PubMed  Google Scholar 

  • Harpole W et al (2011) Nutrient co-limitation of primary producer communities. Ecol Lett 14:852–862. doi:10.1111/j.1461-0248.2011.01651.x

    Article  PubMed  Google Scholar 

  • Hennessey TL, Field CB (1991) Circadian rhythms in photosynthesis. Plant Physiol 96:831–836

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hey T, Tansley S, Tolle K (eds) (2009) The fourth paradigm: data-intensive scientific discovery. Microsoft Research, Redmond

    Google Scholar 

  • Kattge J, Knorr W (2007) Temperature acclimation in a biochemical model of photosynthesis: a reanalysis of data from 36 species. Plant Cell Environ 30(9):1176–1190. doi:10.1111/j.1365-3040.2007.01690.x

    Article  CAS  PubMed  Google Scholar 

  • Kattge J, Knorr W, Raddatz T, Wirth C (2009) Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. Glob Change Biol 15(4):976–991. doi:10.1111/j.1365-2486.2008.01744.x

    Article  Google Scholar 

  • Kattge J et al (2011) TRY–a global database of plant traits. Glob Change Biol. doi:10.1111/j.1365-2486.2011.02451.x

  • Leakey ADB, Press MC, Scholes JD, Watling JR (2002) Relative enhancement of photosynthesis and growth at elevated CO2 is greater under sunflecks than uniform irradiance in a tropical rain forest tree seedling. Plant Cell Environ 25(12):1701–1714. doi:10.1046/j.1365-3040.2002.00944.x

    Article  Google Scholar 

  • Leakey AD, Bishop KA, Ainsworth EA (2012) A multi-biome gap in understanding of crop and ecosystem responses to elevated CO(2). Curr Opin Plant Biol 15(3):228–236. doi:10.1016/j.pbi.2012.01.009

    Article  CAS  PubMed  Google Scholar 

  • LeBauer DS, Wang D, Richter KT, Davidson CC, and Dietze MC (2012), Facilitating feedbacks between field measurements and ecosystem models. Ecol Monogr (in press). doi:10.1890/12-0137.1

  • Leuning R (1995) A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant Cell Environ 18(4):339–355. doi:10.1111/j.1365-3040.1995.tb00370.x

    Article  CAS  Google Scholar 

  • Lin Y-S, Medlyn BE, Ellsworth DS (2012) Temperature responses of leaf net photosynthesis: the role of component processes. Tree Physiol 32(2):219–231. doi:10.1093/treephys/tpr141

    Google Scholar 

  • Long SP, Bernacchi CJ (2003) Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. J Exp Bot 54(392):2393–2401. doi:10.1093/jxb/erg262

    Article  CAS  PubMed  Google Scholar 

  • Medlyn BE, Dreyer E, Ellsworth D, Forstreuter M, Harley PC, Kirschbaum MUF, Roux XLE (2002) Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data. Plant Cell Environ 25:1167–1179

    Article  CAS  Google Scholar 

  • Medlyn BE, Duursma RA, Eamus D, Ellsworth DS, Prentice IC, Barton CVM, Crous KY, De Angelis P, Freeman M, Wingate L (2011) Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob Change Biol 17(6):2134–2144. doi:10.1111/j.1365-2486.2010.02375.x

    Article  Google Scholar 

  • Medvigy DM, Wofsy SC, Munger JW, Hollinger DY, Moorcroft PR (2009) Mechanistic scaling of ecosystem function and dynamics in space and time: ecosystem demography model version 2. J Geophys Res 114(G1):1–21. doi:10.1029/2008JG000812

    Google Scholar 

  • Mohan JE, Clark JS, Schlesinger WH (2007) Long-term CO2 enrichment of a forest ecosystem: implications for forest regeneration and succession. Ecol Appl 17(4):1198–1212

    Article  PubMed  Google Scholar 

  • Moorcroft PR, Hurtt GC, Pacala SW (2001) A method for scaling vegetation dynamics: the ecosystem demography model (ED). Ecol Monogr 71(4):557–586. doi:10.1890/0012-9615(2001)071[0557:AMFSVD]2.0.CO;2

    Google Scholar 

  • Naumburg E, Ellsworth DS (2002) Short-term light and leaf photosynthetic dynamics affect estimates of daily understory photosynthesis in four tree species. Tree Physiol 22:393–401

    Article  PubMed  Google Scholar 

  • Neale D, Aitken S, Dietze MC, Kliebenstein D, Mathews S, Oren R, Wegrzyn J, and Whetten R (2010) Tree biology cyber infrastructure, (online). http://www.iplantcollaborative.org/sites/default/files/Tree_BiologyCI_seed_proposal_FINAL.pdf. Accessed 10 Oct 2012

  • Pacala SW, Canham CD, Saponara J, Silander JA Jr, Kobe RK, Ribbens E (1996) Forest models defined by field measurements: estimation, error analysis and dynamics. Ecol Monogr 66(1):1–43

    Article  Google Scholar 

  • Patrick LD, Ogle K, Tissue DT (2009) A hierarchical Bayesian approach for estimation of photosynthetic parameters of C(3) plants. Plant Cell Environ 32(12):1695–1709. doi:10.1111/j.1365-3040.2009.02029.x

    Article  CAS  PubMed  Google Scholar 

  • Reich PB (1987) Quantifying plant response to ozone: a unifying theory. Tree Physiol 3(1):63–91

    Article  CAS  PubMed  Google Scholar 

  • Ricciuto DM, Thornton PE, Schaefer K, Cook RB, Davis KJ (2009) How uncertainty in gap-filled meteorological input forcing at eddy covariance sites impacts modeled carbon and energy flux. Eos Trans Am Geophys Union 90(52):B54A

    Google Scholar 

  • Riley WJ, Still CJ, Torn MS, Berry JA (2002) A mechanistic model of H218O and C18OO fluxes between ecosystems and the atmosphere: model description and sensitivity analyses. Glob Biogeochem Cycles 16(4):1–14. doi:10.1029/2002GB001878

    Google Scholar 

  • Schaefer KM et al (2012) A model-data comparison of gross primary productivity: results from the North American carbon program site synthesis. J Geophys Res 117:1–15. doi:10.1029/2012JG001960

    Google Scholar 

  • Schwalm CR et al (2010), A model-data intercomparison of CO2 exchange across North America: results from the North American carbon program site synthesis. J Geophy Res 115. doi:10.1029/2009JG001229

  • Sitch S, Cox PM, Collins WJ, Huntingford C (2007) Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature 448(7155):791–794. doi:10.1038/nature06059

    Article  CAS  PubMed  Google Scholar 

  • Smith NG, Dukes JS (2013) Plant respiration and photosynthesis in global-scale models: incorporating acclimation to temperature and CO2. Glob Change Biol 19:45–63. doi:10.1111/j.1365-2486.2012.02797.x

  • Starr G, Oberbauer SF (2003) Photosynthesis of arctic evergreens under snow: implications for tundra ecosystem carbon balance. Ecology 84(6):1415–1420. doi:10.1890/02-3154

    Article  Google Scholar 

  • Townsend AR, Asner GP, Cleveland CC (2008) The biogeochemical heterogeneity of tropical forests. Trends Ecol Evol 23(8):424–431. doi:10.1016/j.tree.2008.04.009

    Article  PubMed  Google Scholar 

  • Wang YP, Law RM, Pak B (2010) A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere. Biogeosciences 7:2261–2282. doi:10.5194/bg-7-2261-2010

    Article  CAS  Google Scholar 

  • Wang D, Maughan MW, Sun J, Feng X, Miguez F, Lee D, Dietze MC (2012) Impact of nitrogen allocation on growth and photosynthesis of Miscanthus (Miscanthus × giganteus). GCB Bioenergy 4(6):688–697. doi:10.1111/j.1757-1707.2012.01167.x

    Article  CAS  Google Scholar 

  • Way DA, Pearcy RW (2012) Sunflecks in trees and forests: from photosynthetic physiology to global change biology. Tree Physiol 32(9):1066–1081. doi:10.1093/treephys/tps064

    Article  PubMed  Google Scholar 

  • Williams W, Gorton H (1998) Circadian rhythms have insignificant effects on plant gas exchange under field conditions. Physiol Plant 103:247–256

    Article  CAS  Google Scholar 

  • Wright IJ et al (2004) The worldwide leaf economics spectrum. Nature 428(6985):821–827. doi:10.1038/nature02403

    Article  CAS  PubMed  Google Scholar 

  • Ziehn T, Kattge J, Knorr W, Scholze M (2011) Improving the predictability of global CO2 assimilation rates under climate change. Geophys Res Lett 38:L10404. doi:10.1029/2011GL047182

    Google Scholar 

Download references

Acknowledgments

This work was supported by National Science Foundation “Advances in Biological Informatics” Grant #10-62547 to M. Dietze and was part of the North American Carbon Program. Xiaohui Feng and Kevin Wolz contributed to the development to the JAGS code for fitting the FvCB model. Ankur Desai provided data from the Willow Creek Ameriflux tower. Andy Leakey, Evan DeLucia, and Don Ort provided numerous enlightening discussions about photosynthesis during my years in the “Genomic Ecology of Global Change” theme at the University of Illinois’s Institute for Genomic Biology. David LeBauer and two anonymous reviewers provided useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael C. Dietze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dietze, M.C. Gaps in knowledge and data driving uncertainty in models of photosynthesis. Photosynth Res 119, 3–14 (2014). https://doi.org/10.1007/s11120-013-9836-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-013-9836-z

Keywords

Navigation