Skip to main content
Log in

Wide-field photon counting fluorescence lifetime imaging microscopy: application to photosynthesizing systems

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Fluorescence lifetime imaging microscopy (FLIM) is a technique that visualizes the excited state kinetics of fluorescence molecules with the spatial resolution of a fluorescence microscope. We present a scanningless implementation of FLIM based on a time- and space-correlated single photon counting (TSCSPC) method employing a position-sensitive quadrant anode detector and wide-field illumination. The standard time-correlated photon counting approach leads to picosecond temporal resolution, making it possible to resolve complex fluorescence decays. This allows parallel acquisition of time-resolved images of biological samples under minimally invasive low-excitation conditions (<10mW/cm2). In this way unwanted photochemical reactions induced by high excitation intensities and distorting the decay kinetics are avoided. Comparably low excitation intensities are practically impossible to achieve with a conventional laser scanning microscope, where focusing of the excitation beam into a tight spot is required. Therefore, wide-field FLIM permits to study Photosystem II (PS II) in a way so far not possible with a laser scanning microscope. The potential of the wide-field TSCSPC method is demonstrated by presenting FLIM measurements of the fluorescence dynamics of photosynthetic systems in living cells of the chlorophyll d-containing cyanobacterium Acaryochloris marina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Singlet–singlet-annihilation can occur if the photon density of the exciting laser pulse is high enough to produce simultaneously more than one excited singlet states per photosynthetic domain. During their random migration through the domain to the reaction center two excitations can meet on the same chromophore. This leads to a loss of one excitation due to internal conversion and thus to a shorter fluorescence lifetime.

Abbreviations

FLIM:

Fluorescence lifetime imaging microscopy

FRET:

Foerster resonance energy transfer

TCSPC:

Time-correlated single photon counting

TSCSPC:

Time- and space-correlated single photon counting

PMT:

Photomultiplier tube

MCP:

Multichannel plate

QA:

Quadrant anode

DL:

Delay line

IRF:

Instrument response function

EET:

Excitation energy transfer

PS I , PS II:

Photosystem I and photosystem II

Chl:

Chlorophyll

PBP:

Phycobiliprotein

S–S:

Singlet–singlet

DCMU:

3-(3,4-Dichlorophenyl)-1,1-dimethyl urea

PC:

Phycocyanin

APC:

Allophycocyanin

QA :

Primary plastoquinone acceptor of PS II.

References

  • Adir N (2005) Elucidation of the molecular structures of components of the phycobilisome: reconstructing a giant. Photosynth Res 85(1):15–32

    Article  CAS  PubMed  Google Scholar 

  • Agronskaia AV, Tertoolen L, Gerritsen HC (2003) High frame rate fluorescence lifetime imaging. J Phys D Appl Phys 36(14):1655–1662

    Article  Google Scholar 

  • Ameloot M, Boens N, Andriessen R, Van den Bergh V, De Schryver FC (1991) Non a priori analysis of fluorescence decay surfaces of excited-state processes .1. theory. J Phys Chem 95(5):2041–2047

    Article  CAS  Google Scholar 

  • Angelier N, Tramier M, Louvet E, Coppey-Moisan M, Savino TM, De Mey JR, Hernandez-Verdun D (2005) Tracking the interactions of rRNA processing proteins during nucleolar assembly in living cells. Mol Biol Cell 16(6):2862–2871

    Article  CAS  PubMed  Google Scholar 

  • Barzda V (2008) Non-linear contrast mechanisms for optical microscopy. In: Amesz J, Hoff AJ (eds) Biophysical techniques in photosynthesis, vol 26 of Advances in photosynthesis and respiration, Springer, The Netherlands, pp 35–54. ISSN 0166-8595

  • Barzda V, de Grauw CJ, Vroom J, Kleima FJ, van Grondelle R, van Amerongen H, Gerritsen HC (2001a) Fluorescence lifetime heterogeneity in aggregates of LHCII revealed by time-resolved microscopy. Biophys J 81(1):538–546

    Article  CAS  PubMed  Google Scholar 

  • Barzda V, Gulbinas V, Kananavicius R, Cervinskas V, van Amerongen H, van Grondelle R, Valkunas L (2001b) Singlet–singlet annihilation kinetics in aggregates and trimers of LHCII. Biophys J 80(5):2409–2421

    Article  CAS  PubMed  Google Scholar 

  • Becker W (2005) Advanced time-correlated single photon counting techniques. Springer Series in Chemical physics, Springer. ISBN 3540260471

  • Becker W, Bergmann A, Hink MA, Konig K, Benndorf K, Biskup C (2004) Fluorescence lifetime imaging by time-correlated single-photon counting. Microsc Res Tech 63(1):58–66

    Article  CAS  PubMed  Google Scholar 

  • Becker W, Bergmann A, Haustein E, Petrášek Z, Schwille P, Biskup C, Kelbauskas L, Benndorf K, Klocker N, Anhut T, Riemann I, König K (2006) Fluorescence lifetime images and correlation spectra obtained by multidimensional time-correlated single photon counting. Microsc Res Tech 69(3):186–195

    Article  CAS  PubMed  Google Scholar 

  • Bergmann A, Eichler HJ, Eckert H-J, Renger G (1998) Picosecond laser-fluorometer with simultaneous time and wavelength resolution for monitoring decay spectra of photoinhibited Photosystem II particles at 277 K and 10 K. Photosynth Res 58(3):303–310

    Article  CAS  Google Scholar 

  • Breton J, Geacintov NE (1980) Picosecond fluorescence kinetics and fast energy-transfer processes in photosynthetic membranes. Biochim Biophys Acta 594(1):1–32

    CAS  PubMed  Google Scholar 

  • Chen Y, Mills JD, Periasamy A (2003) Protein localization in living cells and tissues using FRET and FLIM. Differentiation 71(9–10):528–541

    Article  CAS  PubMed  Google Scholar 

  • Clegg RM (2009) Photosynth Res (this issue)

  • Cole MJ, Siegel J, Webb SED, Jones R, Dowling K, Dayel MJ, Parsons-Karavassilis D, French PMW, Lever MJ, Sucharov LOD, Neil MAA, Juskaitis R, Wilson T (2001) Time-domain whole-field fluorescence lifetime imaging with optical sectioning. J Microsc 203:246–257

    Article  CAS  PubMed  Google Scholar 

  • Cox G, Matz M, Salih A (2007) Fluorescence lifetime imaging of coral fluorescent proteins. Microsc Res Tech 70(3):243–251

    Article  CAS  PubMed  Google Scholar 

  • Czasch A, Dangendorf V, Milnes J, Schossler S, Lauck R, Spillmann U, Howorth J, Jagutzki O (2007a) Position and time sensitive photon counting detector with image charge delay-line readout. Proc Soc Photo Opt Instrum Eng 6771:67710W

    Google Scholar 

  • Czasch A, Milnes J, Hay N, Wicking W, Jagutzki O (2007b) Position- and time-sensitive single photon detector with delay-line readout. Nucl Instrum Methods Phys Res A 580(2):1066–1070

    Article  CAS  Google Scholar 

  • Delbarre E, Tramier M, Coppey-Moisan M, Gaillard C, Courvalin JC, Buendia B (2006) The truncated prelamin A in Hutchinson-Gilford progeria syndrome alters segregation of A-type and B-type lamin homopolymers. Hum Mol Genet 15(7):1113–1122

    Article  CAS  PubMed  Google Scholar 

  • Desportes S, Yatabe Z, Baumlin S, Genot V, Lefevre JP, Ushiki H, Delaire JA, Pansu RB (2007) Fluorescence lifetime imaging microscopy for in situ observation of the nanocrystallization of rubrene in a microfluidic set-up. Chem Phys Lett 446(1–3):212–216

    Article  CAS  Google Scholar 

  • Eckert H-J, Wiese N, Bernarding J, Eichler HJ, Renger G (1988) Analysis of the electron transfer from Pheo to QA in PS-II membrane fragments from spinach by time resolved 325 nm absorption changes in the picosecond domain. FEBS Lett 240(1–2):153–158

    Article  CAS  PubMed  Google Scholar 

  • Eckert H-J, Geiken B, Bernarding J, Napiwotzki A, Eichler HJ, Renger G (1991) Two sites of photoinhibition of the electron transfer in oxygen evolving and Tris-treated PS-II membrane fragments from spinach. Photosynth Res 27(2):97–108

    Article  CAS  Google Scholar 

  • Eckert H-J, Petrášek Z, Kemnitz K (2006) Application of novel low-intensity nonscanning fluorescence lifetime imaging microscopy for monitoring excited state dynamics in individual chloroplasts and living cells of photosynthetic organisms. Proc Soc Photo Opt Instrum Eng 6372:637207

    Google Scholar 

  • Emiliani V, Sanvitto D, Tramier M, Piolot T, Petrášek Z, Kemnitz K, Durieux C, Coppey-Moisan M (2003) Low-intensity two-dimensional imaging of fluorescence lifetimes in living cells. Appl Phys Lett 83(12):2471–2473

    Article  CAS  Google Scholar 

  • Esposito A, Gerritsen HC, Wouters FS (2007) Optimizing frequency-domain fluorescence lifetime sensing for high-throughput applications: photon economy and acquisition speed. J Opt Soc Am A 24(10):3261–3273

    Article  Google Scholar 

  • Festy F, Ameer-Beg SM, Ng T, Suhling K (2007) Imaging proteins in vivo using fluorescence lifetime microscopy. Mol Biosyst 3(6):381–391

    Article  CAS  PubMed  Google Scholar 

  • Geacintov NE, Breton J (1982) Exciton annihilation and nonlinear high-intensity excitation effects. In: Alfano RR (ed) Biological events probed by ultrafast laser spectroscopy. Academic Press, Dublin, pp 157–191. ISBN-10: 0120499509

  • Govindjee, Amesz J, Fork DC (eds) (1986) Light emission by plants and bacteria. Academic Press, Dublin. ISBN 0122943104

  • Gratton E, Breusegem S, Sutin J, Ruan QQ (2003) Fluorescence lifetime imaging for the two-photon microscope: time-domain and frequency-domain methods. J Biomed Opt 8(3):381–390

    Article  PubMed  Google Scholar 

  • Holub O, Seufferheld MJ, Gohlke C, Govindjee, Clegg RM (2000) Fluorescence lifetime imaging (FLI) in real-time—a new technique in photosynthesis research. Photosynthetica 38(4):581–599

    Article  CAS  Google Scholar 

  • Holub O, Seufferheld MJ, Govindjee CG, Heiss GJ, Clegg RM (2007) Fluorescence lifetime imaging microscopy of Chlamydomonas reinhardtii: non-photochemical quenching mutants and the effect of photosynthetic inhibitors on the slow chlorophyll fluorescence transient. J Microsc 226(2):90–120

    Article  CAS  PubMed  Google Scholar 

  • Holzwarth A (1996) Data analysis of time-resolved measurements. In: Amesz J, Hoff AJ (eds) Biophysical techniques in photosynthesis, vol 3 of Advances in photosynthesis and respiration. Kluwer Academic Publishers, Dordrecht, pp 75–92. ISBN 978-0-7923-3642-6

  • Hu Q, Marquardt J, Iwasaki I, Miyashita H, Kurano N, Morschel E, Miyachi S (1999) Molecular structure, localization and function of biliproteins in the chlorophyll a/d containing oxygenic photosynthetic prokaryote Acaryochloris marina. Biochim Biophys Acta Bioenerg 1412(3):250–261

    Article  CAS  Google Scholar 

  • Jose M, Nair DK, Reissner C, Hartig R, Zuschratter W (2007) Photophysics of clomeleon by FLIM: discriminating excited state reactions along neuronal development. Biophys J 92(6):2237–2254

    Article  CAS  PubMed  Google Scholar 

  • Jose M, Nair DK, Altrock WD, Dresbach T, Gundelfinger ED, Zuschratter W (2008) Investigating interactions mediated by the presynaptic protein Bassoon in living cells by Foerster’s resonance energy transfer and fluorescence lifetime imaging microscopy. Biophys J 94(4):1483–1496

    Article  CAS  PubMed  Google Scholar 

  • Kemnitz K, Pfeifer L, Paul R, Coppey-Moisan M (1997) Novel detector for fluorescence lifetime imaging on the picosecond time scale. J Fluoresc 7(1):93–98

    Article  CAS  Google Scholar 

  • Kinoshita K, Goryo K, Takada M, Tomokuni Y, Aso T, Okuda H, Shuin T, Fukumura H, Sogawa K (2007) Ternary complex formation of pVHL, elongin B and elongin C visualized in living cells by a fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy technique. FEBS J 274(21):5567–5575

    Article  CAS  PubMed  Google Scholar 

  • Knutson JR, Beechem JM, Brand L (1983) Simultaneous analysis of multiple fluorescence decay curves—a global approach. Chem Phys Lett 102(6):501–507

    Article  CAS  Google Scholar 

  • Köllner M, Wolfrum J (1992) How many photons are necessary for fluorescence-lifetime measurements? Chem Phys Lett 200(1, 2):199–204

    Article  Google Scholar 

  • Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, Berlin. ISBN-10: 0387312781

  • Lampton M, Malina RF (1976) Quadrant anode image sensor. Rev Sci Instrum 47(11):1360–1362

    Article  Google Scholar 

  • Larkum AWD, Kuhl M (2005) Chlorophyl d: the puzzle resolved. Trends Plant Sci 10(8):355–357

    Article  CAS  PubMed  Google Scholar 

  • Lukins PB, Rehman S, Stevens GB, George D (2005) Time-resolved spectroscopic fluorescence imaging, transient absorption and vibrational spectroscopy of intact and photo-inhibited photosynthetic tissue. Luminescence 20(3):143–151

    Article  CAS  PubMed  Google Scholar 

  • Marquardt J, Senger H, Miyashita H, Miyachi S, Morschel E (1997) Isolation and characterization of biliprotein aggregates from Acaryochloris marina, a Prochloron-like prokaryote containing mainly chlorophyll d. FEBS Lett 410(2-3):428–432

    Article  CAS  PubMed  Google Scholar 

  • Michalet X, Siegmund OHW, Vallerga JV, Jelinsky P, Millaud JE, Weiss S (2006) Photon-counting H33D detector for biological fluorescence imaging. Nucl Instrum Methods Phys Res A 567(1):133–136

    Article  CAS  Google Scholar 

  • Michalet X, Siegmund OHW, Vallerga JV, Jelinsky P, Millaud JE, Weiss S (2007) Detectors for single-molecule fluorescence imaging and spectroscopy. J Mod Opt 54(2–3):239–281

    Article  Google Scholar 

  • Millington M, Grindlay GJ, Altenbach K, Neely RK, Kolch W, Bencina M, Read ND, Jones AC, Dryden DTF, Magennis SW (2007) High-precision FLIM-FRET in fixed and living cells reveals heterogeneity in a simple CFP-YFP fusion protein. Biophys Chem 127(3):155–164

    Article  CAS  PubMed  Google Scholar 

  • Mimuro M, Akimoto S, Yamazaki I, Miyashita H, Miyachi S (1999) Fluorescence properties of chlorophyll d-dominating prokaryotic alga, Acaryochloris marina: studies using time-resolved fluorescence spectroscopy on intact cells. Biochim Biophys Acta Bioenerg 1412(1):37–46

    Article  CAS  Google Scholar 

  • Miyashita H, Ikemoto H, Kurano N, Adachi K, Chihara M, Miyachi S (1996) Chlorophyll d as a major pigment. Nature 383(6599):402–402

    Article  CAS  Google Scholar 

  • Nair DK, Jose M, Kuner T, Zuschratter W, Hartig R (2006) FRET-FLIM at nanometer spectral resolution from living cells. Opt Express 14(25):12217–12229

    Article  PubMed  Google Scholar 

  • Napiwotzki A (1997) Zeitaufgelöste Fluoreszenz- und Absorptionsspektroskopie zur Untersuchung des Anregungsenergietransfers und der Photoinhibition im Photosystem II, PhD thesis, Technische Universität Berlin. ISBN 3-89574-274-0

  • Napiwotzki A, Bergmann A, Decker K, Legall H, Eckert H-J, Eichler HJ, Renger G (1997) Acceptor side photoinhibition in PS II: On the possible effects of the functional integrity of the PS II donor side on photoinhibition of stable charge separation. Photosynth Res 52(3):199–213

    Article  CAS  Google Scholar 

  • Niclass C, Favi C, Kluter T, Gersbach M, Charbon E (2008) A 128 × 128 single-photon image sensor with column-level 10-bit time-to-digital converter array. IEEE J Sol State Circuits 43(12):2977–2989

    Article  Google Scholar 

  • O’Connor DV, Phillips D (1984) Time-correlated single photon counting. Academic Press, Dublin. ISBN 0125241402

  • Pelet S, Previte MJR, Laiho LH, So PTC (2004) A fast global fitting algorithm for fluorescence lifetime imaging microscopy based on image segmentation. Biophys J 87(4):2807–2817

    Article  CAS  PubMed  Google Scholar 

  • Petrášek Z, Schmitt FJ, Theiss C, Huyer J, Chen M, Larkum A, Eichler HJ, Kemnitz K, Eckert H-J (2005) Excitation energy transfer from phycobiliprotein to chlorophyll d in intact cells of Acaryochloris marina studied by time- and wavelength-resolved fluorescence spectroscopy. Photochem Photobiol Sci 4(12):1016–1022

    Article  PubMed  Google Scholar 

  • Purschke M, Nuxoll W, Gaul G, Santo R (1987) An improved quadrant anode image sensor with microchannel plates. Nucl Instrum Methods Phys Res A 261(3):537–539

    Article  Google Scholar 

  • Ramadass R, Bereiter-Hahn J (2008) How DASPMI reveals mitochondrial membrane potential: fluorescence decay kinetics and steady-state anisotropy in living cells. Biophys J 95(8):4068–4076

    Article  CAS  PubMed  Google Scholar 

  • Ramadass R, Becker D, Jendrach M, Bereiter-Hahn J (2007) Spectrally and spatially resolved fluorescence lifetime imaging in living cells: TRPV4–microfilament interactions. Arch Biochem Biophys 463(1):27–36

    Article  CAS  PubMed  Google Scholar 

  • Renger G, Eckert H-J, Bergmann A, Bernarding J, Liu B, Napiwotzki A, Reifarth F, Eichler HJ (1995) Fluorescence and spectroscopic studies of exciton trapping and electron transfer in photosystem II of higher plants. Aust J Plant Physiol 22(2):167–181

    Article  CAS  Google Scholar 

  • Roelofs TA, Lee CH, Holzwarth AR (1992) Global target analysis of picosecond chlorophyll fluorescence kinetics from pea chloroplasts. A new approach to the characterization of the primary processes in photosystem-II α- and β-units. Biophys J 61(5):1147–1163

    Article  CAS  PubMed  Google Scholar 

  • Sauer K, Debreczeny M (1996) Fluorescence. In: Amesz J, Hoff AJ (eds) Biophysical techniques in photosynthesis, vol 3 of Advances in photosynthesis and respiration. Kluwer Academic Publishers, Dordrecht, pp 41–61. ISBN 978-0-7923-3642-6

  • Schatz GH, Brock H, Holzwarth AR (1988) Kinetic and energetic model for the primary processes in photosystem-II. Biophys J 54(3):397–405

    Article  CAS  PubMed  Google Scholar 

  • Schmitt FJ, Theiss C, Wache K, Fuesers J, Andree S, Handojo A, Karradt A, Kiekebusch D, Eichler HJ, Eckert H-J (2006) Investigation of the excited states dynamics in the Chl d-containing cyanobacterium Acaryochloris marina by time- and wavelength correlated single-photon counting. Proc Soc Photo Opt Instrum Eng 6386:638607

    Google Scholar 

  • Spitz JA, Yasukuni R, Sandeau N, Takano M, Vachon JJ, Meallet-Renault R, Pansu RB (2008) Scanning-less wide-field single-photon counting device for fluorescence intensity, lifetime and time-resolved anisotropy imaging microscopy. J Microsc 229(1):104–114

    Article  CAS  PubMed  Google Scholar 

  • Suhling K (2006) Fluorescence lifetime imaging. In: Stephens D (ed) Cell imaging, 1st edn. Scion Publishing, Bloxham, pp 219–245

  • Suhling K, French PMW, Phillips D (2005) Time-resolved fluorescence microscopy. Photochem Photobiol Sci 4(1):13–22

    Article  CAS  PubMed  Google Scholar 

  • Tramier M, Gautier I, Piolot T, Ravalet S, Kemnitz K, Coppey J, Durieux C, Mignotte V, Coppey-Moisan M (2002) Picosecond-hetero-FRET microscopy to probe protein-protein interactions in live cells. Biophys J 83(6):3570–3577

    Article  CAS  PubMed  Google Scholar 

  • van Amerongen H, Dekker J (2003) Light-harvesting in photosystem II. In: Green BR, Parson WW (eds) Light-harvesting antennas in photosynthesis, vol 13 of Advances in photosynthesis and respiration. Kluwer Academic Publishers, Dordrecht, pp 219–251. ISBN 0-7923-6335-3

  • van Grondelle R, Amesz J (1986) Excitation energy transfer in photosynthetic systems. In: Govindjee, Amesz J, Fork DC (eds) Light emission by plants and bacteria. Academic Press, Dublin, pp 191–223. ISBN-10:0122943104

  • van Grondelle R, Dekker JP, Gillbro T, Sundstrom V (1994) Energy-transfer and trapping in photosynthesis. Biochim Biophys Acta Bioenerg 1187(1):1–65

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Artur Napiwotzki for providing the data for Fig. 2, and Monika Weß and Sabine Kussin for cultivating A. marina. We further thank Marco Vitali, Franz-Josef Schmitt, Dr. Christoph Theiss and Prof. Hans-Joachim Eichler for their support. This work was supported by Marie Curie Fellowship (Z. P.) of the European Community program “Quality of Life” under the contract number QLK2-CT-200-60076 and by the Deutsche Forschungsgemeinschaft (SFB 429, TP A1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hann-Jörg Eckert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrášek, Z., Eckert, HJ. & Kemnitz, K. Wide-field photon counting fluorescence lifetime imaging microscopy: application to photosynthesizing systems. Photosynth Res 102, 157–168 (2009). https://doi.org/10.1007/s11120-009-9444-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-009-9444-0

Keywords

Navigation