Skip to main content
Log in

« On-the-go » multispectral imaging system to characterize the development of vineyard foliage with quantitative and qualitative vegetation indices

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Over the last years, the literature presents new technologies to optimize vineyard management. In the proximal sensing context, optical sensors are mainly developed to characterize the vegetation and the most famous one is the Greenseeker RT-100 (Trimble, Germany), that provides NDVI. The interpretation of its measurements is complex because it overlaps quantitative and qualitative information. However, it is a robust active sensor especially dedicated to characterize vineyard at early growth stage. To overcome these limits, we developed a multispectral (RGB, NIR) imaging system. We present a first application of spectral imagery, in proximal sensing conditions, to characterize the vine foliage of three grapevine varieties (Meunier, Pinot Noir and Chardonnay) at four phenological stages. The imaging system is embedded on a ground vehicle acquiring images with natural light, and an original radiometric calibration is proposed. From images, three agronomic indices (NDVIimage, NDVIvegetation and “foliage occupation”) are defined. They are computed from entire images and from the area of the grapes. These indices are compared to Greenseeker ones at the beginning of berry formation to be assessed. Whatever the grapevine variety the NDVIimage is in agreement with the index provided by Greenseeker (NDVI GS ). At the other stages, the comparison of NDVIGS to the other indices leads to a new interpretation of NDVIGS depending on the phenological stage. The new indices provide a better understanding on the part of quantitative and quantitative information in Greenseeker index and lead to a more accurate leaf quantity estimation (from entire images), or specific physiological status characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arnaud M., E. X. (2000). Estimation et interpolation spatiale: méthodes déterministes et méthodes géostatistiques (Hermes sci.). Paris: Hermès Science Publications.

  • Bouguet, J.Y. (2007). Camera calibration toolbox for Matlab. http://www.vision.caltech.edu/bouguetj/calib_doc/. Accessed 21 May 2007.

  • Bourgeon, M.A. (2015). PhD Thesis Conception et évaluation d’un dispositif d’imagerie multi-spectrale de proxidétection embarqué pour caractériser le feuillage de la vigne. Dijon: Burgundy university.

  • Bourgeon, M. A., Paoli, J. N., Jones, G., Villette, S., & Gée, C. (2016). Field radiometric calibration of a multispectral on-the-go sensor dedicated to the characterization of vineyard foliage. Computers and Electronics in Agriculture, 123, 184–194. doi:10.1016/j.compag.2016.02.019.

    Article  Google Scholar 

  • Bramley, R. G. V., & Proffitt, A. P. B. (1999). Managing variability in viticultural production. The Australian Grapegrower and Winemaker, 427(1), 11–16.

    Google Scholar 

  • Bréda, N. (2003). Ground-Based Measurements of Leaf Area Index: A Review of Methods, Instruments and Current Controversies. Journal of experimental botany 54(392): 2403–17. http://jxb.oxfordjournals.org/content/54/392/2403.full (July 11, 2014).

  • Calcante, A., Mena, A., & Mazzetto, F. (2012). Evaluation of ‘ground sensing’ optical sensors for diagnosis of Plasmopara Viticola on vines. Spanish Journal of Agricultural Research, 10(3), 619. doi:10.5424/sjar/2012103-619-11.

    Article  Google Scholar 

  • Debuisson, S., Germain, C., Garcia, O., Panigai, L., Moncomble, D. (2010). Using multiplex and greenseeker to manage spatial variation of vine vigour in Champagne. In Proc. 10th International Conference on Precision Agriculture, Denver Co, USA, pp. 1–21.

  • Diago, M.P., Correa, C., Millán, B., Barreiro, P., Valero, C., Tardaguila, J. (2012). Grapevine yield and leaf area estimation using supervised classification methodology on RGB images taken under field conditions. Sensors 12(12):16988–6. http://www.mdpi.com/1424-8220/12/12/16988.

  • Drissi, R., Goutouly, J. P., Forget, D., & Gaudillere, J. P. (2009). Non-destructive measurement of grapevine leaf area by ground normalized difference vegetation index. Agronomy Journal, 101(1), 226–231. doi:10.2134/agronj2007.0167.

    Article  Google Scholar 

  • Johnson, Lee F. (2003). Temporal stability of an NDVI-LAI relationship in a Napa Valley vineyard. Australian Journal of Grape and Wine Research, 9(2), 96–101. doi:10.1111/j.1755-0238.2003.tb00258.x.

    Article  Google Scholar 

  • Johnson, L. F., Roczen, D. E., Youkhana, S. K., Nemani, R. R., & Bosch, D. F. (2003). Mapping vineyard leaf area with multispectral satellite imagery. Computers and Electronics in Agriculture, 38, 33–44. doi:10.1016/S0168-1699(02)00106-0.

    Article  Google Scholar 

  • Journel, A. G., & Huijbregts, Ch J. (1978). Mining geostatistics. San Francisco: Academic Press.

    Google Scholar 

  • Kim, Y., Glenn, D. M., Park, J., Ngugi, H. K., & Lehman, B. L. (2012). Characteristics of active spectral sensor for plant sensing. Transactions of the ASABE, 55(1), 293–301. doi:10.13031/2013.41239.

    Article  Google Scholar 

  • Lloret, J., Bosch I., Sendra, S., Serrano, A. (2011). A wireless sensor network for vineyard monitoring that uses image processing. Sensors 11(6):6165–96. http://www.mdpi.com/1424-8220/11/6/6165.

  • Mansouri, A., Marzani, F. S., & Gouton, P. (2005). Development of a protocol for CCD calibration: application to a multispectral imaging system. International Journal of Robotics and Automation, 20(2), 94–100.

    Article  Google Scholar 

  • Mazzetto, F., Calcante, A., Mena, A., & Vercesi, A. (2010). Integration of optical and analogue sensors for monitoring canopy health and vigor in precision viticulture. Precision Agriculture Journal, 11(6), 636–649. doi:10.1007/s11119-010-9186-1.

    Article  Google Scholar 

  • Meier, U. (2001). Growth stages of mono-and dicotyledonous plants. BBCH Monograph. Berlin: German Federal Biological Research Centre for Agriculture and Forestry, Ed. (2nd ed.).

  • Mulla, D. J. (2013). Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosystems Engineering, 114(4), 358–371. doi:10.1016/j.biosystemseng.2012.08.009.

    Article  Google Scholar 

  • Peñuelas, J., & Filella, I. (1998). Visible and near-Infrared Reflectance Techniques for Diagnosing Plant Physiological Status. Trends in Plant Science, 3(4), 151–156. doi:10.1016/S1360-1385(98)01213-8.

    Article  Google Scholar 

  • Porro, D., Stefanini M., Failla O., Stringari G. (1995). Optimal Leaf Sampling Time in Diagnosis of Grapevine Nutritional Status. In ISHS Acta Horticulturae 383: Mineral Nutrition of Deciduous Fruit Plants, 135–42. doi:10.17660/ActaHortic.1995.383.15.

  • Porro, D, Dorigatti, C. (2000). Use of SPAD Meter in Diagnosis of Nutritional Status in Apple and Grapevine. In ISHS Acta Horticulturae 564: IV International Symposium on Mineral Nutrition of Deciduous Fruit Crops. 243–252. doi:10.17660/ActaHortic.2001.564.28.

  • Reynolds, AG., Brown, R., Kotsaki, E., Lee, HS. (2015). Utilization of Proximal Sensing Technology (Greenseeker) to Map Variability in Ontario Vineyards. In Proc. 19th International Symposium GiESCO, Gruissan, France, 593–97.

  • Rouse, J.W., Hass, R.H., Schell, J.A., Deering, D.W. (1973). Monitoring vegetation systems in the great plains with ERTS. In Proc. 3rd Earth Resources Technology Satellite (ERTS) Symposium, Washington, DC, USA: NASA SP-351, NASA,Vol 1, pp. 309–17.

  • Sáiz-Rubio, V., & Rovira-Más, F. (2012). Dynamic segmentation to estimate vine vigor from ground images. Spanish Journal of Agricultural Research, 10(3), 596–604.

    Article  Google Scholar 

  • Sankaran, S., Mishra, A., Ehsani, R., & Davis, C. (2010). A review of advanced techniques for detecting plant diseases. Computers and Electronics in Agriculture, 72(1), 1–13. doi:10.1016/j.compag.2010.02.007.

    Article  Google Scholar 

  • Taskos, D. G., Koundouras, S., Stamatiadis, S., Zioziou, E., Nikolaou, N., Karakioulakis, K., et al. (2014). Using active canopy sensors and chlorophyll meters to estimate grapevine nitrogen status and productivity. Precision Agriculture, 16(1), 77–98.

    Article  Google Scholar 

  • Tirelli, P., Marchi, M., Calcante, A., Vitalini, S., Iriti, M., Borghese, N.A., Oberti, R. (2012). Multispectral image analysis for grapevine diseases automatic detection in field conditions. In Proceedings of the International Conference of Agricultural Engineering CIGR-AgEng, pp. 1–6.).

  • Tregoat, O., Ollat, N., Grenier, G., & Van Leewen, C. (2001). Etude comparative de la précision et de la rapidité de mise en oeuvre de différentes méthodes d’estimation de la surface foliaire de la vigne. Journal International des Sciences de la Vigne et du Vin, 35(1), 31–39.

    Google Scholar 

  • Valdes-Gomez, H. (2007). PhD Thesis Relation entre états de croissance de la vigne et maladies cryptogamiques sous différentes modalités d’entretien du sol en région méditerranéenne, Montpellier Supagro.

  • Vilain, M. (2012). Méthodes expérimentales en agronomie: pratique et analyse (p. 424). Paris: Tec & Doc Lavoisier.

    Google Scholar 

  • Zhang, Z. (2000). A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11), 1330–1334. doi:10.1109/34.888718.

    Article  Google Scholar 

Download references

Acknowledgement

This work is a part of a PhD project financed by the Regional Council of Burgundy and two technical institutes of Burgundy (Bureau Interprofessionnel des Vins de Bourgogne, BIVB) and of Champagne (Comité Interprofessionnel du Vin de Champagne, CIVC). We thank for their implication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. N. Paoli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bourgeon, M.A., Gée, C., Debuisson, S. et al. « On-the-go » multispectral imaging system to characterize the development of vineyard foliage with quantitative and qualitative vegetation indices. Precision Agric 18, 293–308 (2017). https://doi.org/10.1007/s11119-016-9489-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-016-9489-y

Keywords

Navigation