Skip to main content
Log in

Improved remote sensing detection of wheat powdery mildew using dual-green vegetation indices

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

In this study, we investigated the possibility of using ground-based remote sensing technology to estimate powdery mildew disease severity in winter wheat. Using artificially inoculated fields, potted plants, and disease nursery tests, we measured the powdery mildew canopy spectra of varieties of wheat at different levels of incidence and growth stages to investigate the disease severity. The results showed that the powdery mildew sensitive bands were between 580 and 710 nm. The best two-band vegetation index that correlated with wheat powdery mildew between 400 and 1000 nm wavelength were the normalized spectrum 570–590 and 536–566 nm bands for the ratio index, and 568–592 and 528–570 nm for the normalized difference index. The coefficients of determination (R 2) for both were almost the same. The optimum dual-green vegetation index was constructed based on a calculation of the ratio and normalized difference between the normalized spectrum within the two green bands. The coefficients of determination (R 2) of DGSR (584, 550) (dual-green simple ratio) and DGND (584, 550) (dual-green normalized difference) were both 0.845. The inverse models of disease severity performed well in the test process at the canopy scale, and indicated that, compared with the traditional vegetation indices of Lwidth, mND705, ND (SDr, SDb), SIPI, and GNDVI, the novel dual-green indices greatly improved the remote sensing detection of wheat powdery mildew disease. Following these results, combined disease severity and canopy spectra were shown to be of enormous value when applied to the accurate monitoring, prevention, and control of crop diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

SR:

Simple ratio

ND:

Normalized difference

SD:

Simple difference

MSR:

Modified simple ratio

SIPI:

Structural independent pigment index

SAVI:

Soil adjusted vegetation index

TSAVI:

Transformed soil adjusted vegetation index

MSAVI:

Improved SAVI with self-adjustment factor L

PSRI:

Plant senescence reflectance index

CTR2:

Carter indices

mND705:

Modified ND705 by incorporating reflectance at 445 nm

Depth672:

The depth of the absorption feature at 672 nm

Lwidth:

Red edge width

SDr:

Sum of 1st derivative values within red edge

SDb:

Sum of 1st derivative values within blue edge

SDy:

Sum of 1st derivative values within yellow edge

ND (SDr, SDb):

Normalized difference between SDr and SDb

ND (SDr, SDy):

Normalized difference between SDr and SDy

PRI:

Photochemical reflectance index

RVI:

Ratio vegetation index

NDVI:

Normalized difference vegetation index

GNDVI:

Green normalized difference vegetation index

RVSI:

Red-edge vegetation stress index

VARI:

Visible atmospherically resistant index

WI:

Water index

NSRI:

Spectral ratio index in near-infrared shoulder region

PMI:

Powdery mildew index

MCARI:

Modified chlorophyll absorption ratio index

ARI:

Anthocyanin reflectance index

DGND:

Dual-green normalized difference

DGSR:

Dual-green simple ratio

RGND:

Red-green normalized difference

RRSD:

Red-red simple difference

ReRSD:

Red-edge-red simple difference

PLSR:

Partial least squares regression

cDI:

Conventional disease index

mDI:

Modified disease index

LAI:

Leaf area index

R2 :

The coefficients of determination

RMSE:

The root mean square error

RE:

The relative error

References

  • Atzberger, C., Darvishzadeh, R., Immitzer, M., Schlerf, M., Skidmore, A., & Maire, G. (2015). Comparative analysis of different retrieval methods for mapping grassland leaf area index using airborne imaging spectroscopy. International Journal of Applied Earth Observation and Geoinformation, 43, 19–31.

    Article  Google Scholar 

  • Baret, F., & Guyot, G. (1991). Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sensing of Environment, 35(2–3), 161–173.

    Article  Google Scholar 

  • Baret, F., Guyot, G., & Major, D. J. (1989). TSAVI: A vegetation index which minimizes soil brightness effects on LAI and APAR estimation. In: Proceedings of IGARRS’89. 12th Canadian symposium on remote sensing, Vancouver, Canada, 3, (pp. 1355–1358).

  • Cai, C. J., Ma, Z. H., Wang, H. G., Zhang, Y. P., & Huang, W. J. (2007). Comparison research of hyperspectral properties between near-ground and high altitude of wheat strip rust. Acta Phytopathologica Sinica, 37, 77–82. (in Chinese).

    Google Scholar 

  • Cao, X. R., Luo, Y., Zhou, Y. L., Duan, X. Y., & Cheng, D. F. (2013). Detection of powdery mildew in two winter wheat cultivars using canopy hyperspectral reflectance. Crop Protection, 45, 124–131.

    Article  Google Scholar 

  • Carter, G. A., & Miller, R. L. (1994). Early detection of plant stress by digital imaging within narrow stress sensitive wavebands. Remote Sensing of Environment, 50, 295–302.

    Article  Google Scholar 

  • Cheng, T., Rivard, B., Sánchez-Azofeifa, G., Feng, J., & Calvo-Polanco, M. (2010). Continuous wavelet analysis for the detection of green attack damage due to mountain pine beetle infestation. Remote Sensing of Environment, 114, 899–910.

    Article  Google Scholar 

  • Daughtry, C. S., Walthall, C. L., Kim, M. S., de Colstoun, E. B., & McMurtrey, J. E. (2000). Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment, 74(2), 229–239.

    Article  Google Scholar 

  • Franke, J., & Menz, G. (2007). Multi-temporal wheat disease detection by multi-spectral remote sensing. Precision Agriculture, 8, 161–172.

    Article  Google Scholar 

  • Gamon, J. A., Penuelas, J., & Field, C. B. (1992). A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sensing of Environment, 41, 35–44.

    Article  Google Scholar 

  • Gitelson, A. A., Kaufman, Y. J., & Merzlyak, M. N. (1996). Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment, 58(3), 289–298.

    Article  Google Scholar 

  • Gitelson, A. A., Kaufman, Y. J., Stark, R., & Rundquist, D. (2002). Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment, 80, 76–87.

    Article  Google Scholar 

  • Gitelson, A. A., Merzlyak, M. N., & Chivkunova, O. B. (2001). Optical properties and nondestructive estimation of anthocyanin content in plant leaves. Photochemistry and Photobiology, 74(1), 38–45.

    Article  CAS  PubMed  Google Scholar 

  • Gong, P., Pu, R. L., & Heald, R. C. (2002). Analysis of in situ hyperspectral data for nutrient estimation of giant sequoia. International Journal of Remote Sensing, 23, 1827–1850.

    Article  Google Scholar 

  • Graeff, S., Link, J., & Claupein, W. (2006). Identification of powdery mildew (Erysiphe graminis sp. tritici) and take-all disease(Gaeumannomyces graminis sp. tritici) in wheat (Triticum aestivum L.) by means of leaf reflectance measurements. Central European Journal of Biology, 1, 275–288.

    Google Scholar 

  • Guo, J. B., Huang, C., Wang, H. G., Sun, Z. Y., & Ma, Z. H. (2009). Disease index inversion of wheat stripe rust on different wheat varieties with hyperspectral remote sensing. Spectroscopy and Spectral Analysis, 29, 3353–3357. (in Chinese).

    CAS  PubMed  Google Scholar 

  • Haboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J., & Strachan, I. (2004). Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture. Remote Sensing of Environmment, 90, 337–352.

    Article  Google Scholar 

  • Herrmann, I., Pimstein, A., Karnieli, A., Cohen, Y., Alchanatis, V., & Bonfil, D. J. (2011). LAI assessment of wheat and potato crops by VEN mu S and Sentinel-2 bands. Remote Sensing of Environment, 115, 2141–2151.

    Article  Google Scholar 

  • Huang, W. J., David, W. L., Niu, Z., Zhang, Y. J., Liu, L. Y., & Wang, J. H. (2007). Identification of yellow rust in wheat using in situ spectral reflectance measurements and airborne hyperspectral imaging. Precision Agriculture, 8, 187–197.

    Article  Google Scholar 

  • Huete, A. R. (1988). A soil adjusted vegetation index (SAVI). Remote Sensing of Environment, 25, 295–309.

    Article  Google Scholar 

  • Jing, X., Huang, W. J., Wang, J. H., Wang, J. D., & Wang, K. R. (2009). Hyperspectral inversion models on verticillium wilt severity of cotton leaf. Spectroscopy and Spectral Analysis, 29, 3348–3352. (in Chinese).

    CAS  PubMed  Google Scholar 

  • Kobayashi, T., Kanda, E., Kitada, K., Ishiguro, K., & Torigoe, Y. (2001). Detection of rice panicle blast with multi-spectral radiometer and the potential of using airborne multi-spectral scanner. Phytopathology, 91, 316–323.

    Article  PubMed  Google Scholar 

  • Kokaly, R. F., & Clark, R. N. (1999). Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression. Remote Sensing of Environment, 67, 267–287.

    Article  Google Scholar 

  • Li, F., Mistele, B., Hu, Y. C., Chen, X. P., & Schmidhalter, U. (2014). Reflectance estimation of canopy nitrogen content in winter wheat using optimised hyperspectral spectral indices and partial least squares regression. European Journal of Agronomy, 52, 198–209.

    Article  CAS  Google Scholar 

  • Liu, L. Y., Huang, W. J., Pu, R. L., & Wang, J. H. (2014). Detection of internal leaf structure deterioration using a new spectral ratio index in the near-infrared shoulder region. Journal of Integrative Agriculture, 13, 760–769.

    Article  Google Scholar 

  • Luo, J. H., Huang, W. J., Yuan, L., Zhao, C. J., Du, S. Z., Zhang, J. C., et al. (2013). Evaluation of spectral indices and continuous wavelet analysis to quantify aphid infestation in wheat. Precision Agriculture, 14, 151–161.

    Article  Google Scholar 

  • Mahlein, A. K., Rumpf, T., Welke, P., Dehne, H. W., Plümer, L., Steiner, U., et al. (2013). Development of spectral indices for detecting and identifying plant diseases. Remote Sensing Environment, 128, 21–30.

    Article  Google Scholar 

  • Maxwell, J. J., Lyerly, J. H., Cowger, C., Marshall, D., Brown-Guedira, G., & Murphy, J. P. (2009). MlAG12: a Triticum timopheevii-derived powdery mildew resistance gene in common wheat on chromosome 7AL. Theoretical and Applied Genetics, 119, 1489–1495.

    Article  CAS  PubMed  Google Scholar 

  • Merton, R., & Huntington, J. (1999). Early simulation of the ARIES-1 satellite sensor for multi-temporal vegetation research derived from AVIRIS. In Summaries of the Eight JPL Airborne Earth Science Workshop. JPL Publication, Pasadena, CA (pp. 299–307)

  • Merzlyak, M. N., Gitelson, A. A., Chivkunova, O. B., & Rakitin, V. Y. (1999). Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Plant Physiology, 106, 135–141.

    Article  CAS  Google Scholar 

  • Miller, J. R., Hare, E. W., & Wu, J. (1990). Quantitative characterization of the vegetation red edge reflectance: 1. An inverted-Gaussian reflectance model. International Journal of Remote Sensing, 11, 1755–1773.

    Article  Google Scholar 

  • Oumar, Z., Mutanga, O., & Ismail, R. (2013). Predicting Thaumastocoris peregrinus damage using narrow band normalized indices and hyperspectral indices using field spectra resampled to the Hyperion sensor. International Journal of Applied Earth Observation Geoinformation, 21, 113–121.

    Article  Google Scholar 

  • Naidu, R. A., Perry, E. M., Pierce, F. J., & Mekuria, T. (2009). The potential of spectral reflectance technique for the detection of Grapevine leafroll-associated virus-3 in two red-berried wine grape cultivars. Computers and Electronics in Agriculture, 66(1), 38–45.

    Article  Google Scholar 

  • Peñuelas, J., Baret, F., & Filella, I. (1995). Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica, 31, 221–230.

    Google Scholar 

  • Peñuelas, J., Pinol, J., Ogaya, R., & Filella, I. (1997). Estimation of plantwater concentration by the reflectance water index wi (r900/r970). International Journal of Remote Sensing, 18, 2869–2875.

    Article  Google Scholar 

  • Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H., & Sorooshian, S. (1994). Modified soil adjusted vegetation index (MSAVI). Remote Sensing of Environment, 48, 119–126.

    Article  Google Scholar 

  • Raikes, C., & Burpee, L. (1998). Use of multispectral radiometry for assessment of rhizoctonia blight in creeping bentgrass. Phytopathology, 88, 446–449.

    Article  CAS  PubMed  Google Scholar 

  • Sankaran, S., Mishra, A., Ehsani, R., & Davis, C. (2010). A review of advanced techniques for detecting plant diseases. Computers and Electronics in Agriculture, 72, 1–13.

    Article  Google Scholar 

  • Sharma, A. K., Sharma, R. K., & Srinivasa Babu, K. (2004). Effect of planting options and irrigation schedules on development of powdery mildew and yield of wheat in the North Western plains of India. Crop Protection, 23, 249–253.

    Article  Google Scholar 

  • Sims, D. A., & Gamon, J. A. (2002). Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 81, 337–354.

    Article  Google Scholar 

  • Steddom, K., Heidel, G., Jones, D., & Rush, C. M. (2003). Remote detection of rhizomania in sugar beets. Phytopathology, 93(6), 720–726.

    Article  CAS  PubMed  Google Scholar 

  • Tian, Y. C., Yao, X., Yang, J., Cao, W. X., Hannaway, D. B., & Zhu, Y. (2011). Assessing newly developed and published vegetation indices for estimating rice leaf nitrogen concentration with ground- and space-based hyperspectral reflectance. Field Crop Research, 120, 299–310.

    Article  Google Scholar 

  • Turton, B. C. H. (1992). A novel variant of the Savitzky-Golay filter for spectroscopic applications. Measurement Science and Technology, 3, 858–863.

    Article  Google Scholar 

  • Wang, D. H., Dowell, F. E., Lan, Y. F., Pasikatan, M., & Maghirang, E. (2002). Determining pecky rice kernels using visible and near-infrared spectroscopy. International Journal of Food Properties, 5, 629–639.

    Article  Google Scholar 

  • West, J. S., Bravo, C., Oberti, R., Lemaire, D., Moushou, D., & McCartney, H. A. (2003). The potential of optical canopy measurement for targeted control of field crop diseases. Annual review of Phytopathology, 41, 593–614.

    Article  CAS  PubMed  Google Scholar 

  • Yang, C. M., Cheng, C. H., & Chen, R. K. (2007). Changes in spectral characteristics of rice canopy infest with brown planthopper and lesffolder. Crop Science, 47(1), 329–335.

    Article  CAS  Google Scholar 

  • Yang, Z., Rao, M. N., Elliott, N. C., Kindler, S. D., & Popham, T. W. (2009). Differentiating stress induced by greenbugs and Russian wheat aphids in wheat using remote sensing. Computers and Electronics in Agriculture, 67, 64–70.

    Article  Google Scholar 

  • Yoshio, I., Eiji, S., Zhu, Y., & Wataru, T. (2012). Diagnositic mapping of canopy nitrogen content in rice based on hyperspectral measurements. Remote Sensing of Environment, 126, 210–221.

    Article  Google Scholar 

  • Zhang, J., Pu, R., Huang, W., Lin, Y., Luo, J., & Wang, J. (2012a). Using in situ hyperspectral data for detecting and discriminating yellow rust disease from nutrient stresses. Field Crops Research, 134(3), 165–174.

    Article  Google Scholar 

  • Zhang, J. C., Pu, R. L., Wang, J. H., Huang, W. J., Yuan, L., & Luo, J. H. (2012b). Detecting powdery mildew of winter wheat using leaf level hyperspectral measurements. Computers and Electronics in Agriculture, 85, 13–23.

    Article  Google Scholar 

  • Zhang, J. C., Pu, R. L., Yuan, L., Wang, J. H., Huang, W. J., & Yang, G. J. (2014). Monitoring powdery mildew of winter wheat by using moderate resolution multi-temporal satellite imagery. PLoS ONE, 9, 93–107.

    Google Scholar 

  • Zhang, M. H., Qin, Z. H., Liu, X., & Ustin, S. L. (2003). Detection of stress in tomatoes induced by late blight disease in California, USA, using hyperspectral remote sensing. International Journal of Applied Earth Observation and Geoinformation, 4, 295–310.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the National Natural Science Foundation of China (30900867), the Special Fund for Agro-scientific Research in the Public Interest (201203096, 201303109), the Twelfth Five-Year National Science & Technology Pillar Program (2015BAD26B01, 2013BAD07B07), and the Key Scientific Research Project of Colleges and Universities in Henan Province, China (15A210010).

Author contributions

Wei Feng, Wenying Shen, Tiancai Guo conceived and designed the research. Wei Feng, Wenying Shen, Yingxue Li and Chenyang Wang analyzed the data and wrote the manuscript. Jianzhao Duan, Li He and Binbin Guo provided data and data acquisition capacity.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Feng or Tiancai Guo.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, W., Shen, W., He, L. et al. Improved remote sensing detection of wheat powdery mildew using dual-green vegetation indices. Precision Agric 17, 608–627 (2016). https://doi.org/10.1007/s11119-016-9440-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-016-9440-2

Keywords

Navigation