Skip to main content

Advertisement

Log in

Monitoring of soil organic carbon over 10 years in a Mediterranean silvo-pastoral system: potential evaluation for differential management

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Soil organic carbon (SOC) plays a vital role in determining the susceptibility to land degradation. The recommended procedure for the recovery of the characteristic poor soils of the Southern region of Portugal is the installation of grazed permanent pastures and increase of soil fertility. The objectives of this study were: (i) to identify the spatial and temporal patterns of soil nutrients at four points in time over a 10-year period in a perennial pastureland; (ii) to test new tools for survey of the spatial variability of soil nutrients; (iii) to evaluate the potential for differential organic management. A 6 ha permanent bio-diverse pasture field, grazed by sheep and improved by annual application of super phosphate fertilizer, was installed on a shallow soil in Mediterranean conditions. Spatial variability and temporal stability of topsoil macronutrients (phosphorus, nitrogen and potassium), SOC and pH were measured. The results indicate that SOC and pH have great potential for implementing differential management. In the case of SOC, the management classes map shows that over 80 % of the area has temporal stability, while more than 50 % of the area has low levels of SOC (<10 g kg−1), justifying the potential for differential application of C-rich organic soil amendments. The geospatial measurements of apparent soil electrical conductivity (ECa) and NDVI index showed significant correlation between these parameters and soil properties, revealing the potential of these tools for producing detailed soil maps, decisive for understanding the changes in soil properties under sustainable management systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Blackmore, S. (2000). The importance of trends from multiple yield maps. Computers and Electronics in Agriculture, 26, 37–51.

    Article  Google Scholar 

  • Broge, N. H., & Leblanc, E. (2000). Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment, 76, 156–172.

    Article  Google Scholar 

  • Corral-Fernández, R., Parras-Alcantára, L., & Lozano-García, B. (2013). Stratification ratio of soil organic C, N and C:N in Mediterranean evergreen oak woodland with conventional and organic tillage. Agriculture, Ecosystems & Environment, 164, 252–259.

    Article  Google Scholar 

  • Efe Serrano, J. (2006). Pastures in Alentejo: Technical basis for characterization, grazing and improvement. Évora, Portugal (in Portuguese): Universidade de Évora ICAM.

    Google Scholar 

  • Egner, H., Riehm, H., & Domingo, W. R. (1960). Utersuchungeniiber die chemische Bodenanalyse als Grudlagefiir die Beurteilung des Nahrstoff-zunstandes der Boden. II. K. Lantbrhogsk. Annlr., 20, 199–216. (in German).

    Google Scholar 

  • ESRI (Environmental Systems Research Institute) Inc. (2009). ArcView 9.3 GIS Geostatistical Analyst, Redlands:ESRI.

  • FAO (2006) World reference base for soil resources. Food and Agriculture Organization of the United Nations, World Soil Resources Reports N◦ 103, Rome, Italy.

  • Gitelson, A. A. (2004). Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. Journal of Plant Physiology, 161(2), 165–173.

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Rey, M. X., Garcês, A., & Madeira, M. (2012). Soil organic-C accumulation and N availability under improved pastures established in Mediterranean oak woodlands. Soil Use and Management, 28, 497–507.

    Article  Google Scholar 

  • King, J., Dampney, P., Lark, R., Wheeler, H., Bradley, R., & Mayr, T. (2005). Mapping potential crop management zones within fields: Use of yield-map series and patterns of soil physical properties identified by electromagnetic induction sensing. Precision Agriculture, 6, 167–181.

    Article  Google Scholar 

  • Kumhálová, J., Kumhála, F., Kroulík, M., & Matejková, S. (2011). The impact of topography on soil properties and yield and the effects of weather conditions. Precision Agriculture, 12, 813–830.

    Article  Google Scholar 

  • Ladoni, M., Bahrami, H., Alavipanah, S., & Norouzi, A. (2010). Estimating soil organic carbon from soil reflectance: A review. Precision Agriculture, 11(1), 82–99.

    Article  Google Scholar 

  • Liu, D. L., Anwar, M. R., O’Leary, G., & Conyers, M. K. (2014). Managing wheat stubble as an effective approach to sequester soil carbon in a semi-arid environment: Spatial modelling. Geoderma, 214–215, 50–61.

    Article  Google Scholar 

  • Lozano-García, B., & Parras-Alcántara, L. (2013). Land use and management effects on carbon and nitrogen in Mediterranean Cambisols. Agriculture, Ecosystems & Environment, 179, 208–214.

    Article  Google Scholar 

  • Machado, P. (2005). Soil carbon and the mitigation of global climate change. Química Nova, 28(2), 329–334.

    Article  CAS  Google Scholar 

  • Moral, F., Terrón, J., & da Silva, J. M. (2010). Delineation of management zones using mobile measurements of soil apparent electrical conductivity and multivariate geostatistical techniques. Soil and Tillage Research, 106, 335–343.

    Article  Google Scholar 

  • Mu, L., Liang, Y., Xue, Q., Chen, C., & Lin, X. (2014). Using the DNDC model to compare soil organic carbon dynamics under different crop rotation and fertilizer strategies. Spanish Journal of Agricultural Research, 12(1), 265–276.

    Article  Google Scholar 

  • Nieto, O. M., Castro, J., Fernandez, E., & Smith, P. (2010). Simulation of soil organic carbon stocks in a Mediterranean olive grove under different soil-management systems using the RothC model. Soil Use and Management, 26, 118–125.

    Article  Google Scholar 

  • Orgill, S. E., Condon, J. R., Conyers, M. K., Greene, R. S. B., Morris, S. G., & Murphy, B. W. (2014). Sensitivity of soil carbon to management and environmental factors within Australian perennial pasture systems. Geoderma, 214–215, 70–79.

    Article  Google Scholar 

  • Ritchie, M. E. (2014). Plant compensation to grazing and soil carbon dynamics in a tropical grassland. PeerJ, 2, e233. doi:10.7717/peerj.233.

    Article  PubMed  PubMed Central  Google Scholar 

  • Romanya, J., & Rovira, P. (2011). An appraisal of soil organic C content in Mediterranean agricultural soils. Soil Use and Management, 27, 321–332.

    Google Scholar 

  • Römkens, P., Plicht, J., & Hassink, J. (1999). Soil organic matter dynamics after the conversion of arable land to pasture. Biology and Fertility of Soils, 28, 277–284.

    Article  Google Scholar 

  • Rutledge, S., Mudge, P. L., Wallace, D. F., Campbell, D. I., Woodward, S. L., Walla, A. M., et al. (2014). CO2 emissions following cultivation of a temperate permanent pastures. Agriculture, Ecosystems & Environment, 184, 21–33.

    Article  CAS  Google Scholar 

  • Schipper, L. A., Parfitt, R. L., Fraser, S., Littler, R. A., Baisden, W. T., & Ross, C. (2014). Soil order and grazing management effects on changes in soil C and N in New Zealand pastures. Agriculture, Ecosystems & Environment, 184, 67–75.

    Article  CAS  Google Scholar 

  • Seddaiu, G., Porcu, G., Ledda, L., Roggero, P. P., Agnelli, A., & Corti, G. (2013). Soil organic matter content and composition as influenced by soil management in a semi-arid Mediterranean agro-silvo-pastoral system. Agriculture, Ecosystems & Environment, 167, 1–11.

    Article  Google Scholar 

  • Serrano, J., Peça, J., Marques da Silva, J., & Shahidian, S. (2010). Mapping soil and pasture variability with an electromagnetic induction sensor. Computers and Electronics in Agriculture, 73, 7–16.

    Article  Google Scholar 

  • Serrano, J., Shahidian, S., & Marques da Silva, J. (2013). Small scale soil variation and its effect on pasture yield in Southern Portugal. Geoderma, 195–196, 173–183.

    Article  Google Scholar 

  • Serrano, J., Marques da Silva, J., & Shahidian, S. (2014). Spatial and temporal patterns of potassium on grazed permanent pastures—management challenges. Agriculture, Ecosystems & Environment, 188, 29–39.

    Article  CAS  Google Scholar 

  • Shi, Z., Wang, K., Bailey, J. S., Jordan, C., & Higgins, A. H. (2002). Temporal changes in the spatial distributions of some soil properties on a temperate grassland site. Soil Use and Management, 18, 353–362.

    Article  Google Scholar 

  • Whitmore, A. P., Kirk, G. J. D., & Rawlins, B. G. (2014). Technologies for increasing carbon storage in soil to mitigate climate change. Soil Use and Manangement. doi:10.1111/sum.12115

  • Xavier, F., Maia, S., Ribeiro, K., Mendonça, E., & Oliveira, T. (2013). Effect of cover plants on soil C and N dynamics in different soil management systems in dwarf cashew culture. Agriculture, Ecosystems & Environment, 165, 173–183.

    Article  Google Scholar 

  • Xu, H. W., Wang, K., Bailey, J., Jordan, C., & Withers, A. (2006). Temporal stability of sward dry matter and nitrogen yield patterns in a temperate grassland. Pedosphere, 16, 735–744.

    Article  Google Scholar 

  • Yadav, R. P., Sharma, P., Arya, S. L., & Panwar, P. (2014). Acacia nilotica-based silvipastoral systems for resource conservation and improved productivity from degraded lands of the Lower Himalayas. Agroforestry Systems, 88(5), 851–853.

    Article  Google Scholar 

  • Yan, Y., Tian, J., Fan, M., Zhang, F., Li, X., Christie, P., et al. (2012). Soil organic carbon and total nitrogen in intensively managed arable soils. Agriculture, Ecosystems & Environment, 150, 102–110.

    Article  CAS  Google Scholar 

  • Yuan, X., Chai, X., Gao, R., He, Y., Jin, H., & Huang, Y. (2007). Temporal and spatial variability of soil organic matter in a county scale agricultural ecosystem. New Zealand Journal of Agricultural Research, 50, 1157–1168.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by FEDER Funds through the Operational Programme for Competitiveness Factors—COMPETE and National Funds through FCT—Foundation for Science and Technology under the Strategic Project PEst-C/AGR/UI0115/2011 and under the FCT project—EXCL_AGR-TEC_0336_2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Serrano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serrano, J.M., Shahidian, S., da Silva, J.M. et al. Monitoring of soil organic carbon over 10 years in a Mediterranean silvo-pastoral system: potential evaluation for differential management. Precision Agric 17, 274–295 (2016). https://doi.org/10.1007/s11119-015-9419-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-015-9419-4

Keywords

Navigation