Skip to main content
Log in

Risk mapping of redheaded cockchafer (Adoryphorus couloni) (Burmeister) infestations using a combination of novel k-means clustering and on-the-go plant and soil sensing technologies

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

The ability to identify areas of pasture that are more likely to support damaging levels of the soil-borne, redheaded cockchafer (Adoryphorus couloni) (Burmeister) (RHC) would allow farmers to target expensive control measures. This study explored soil properties, measured via electromagnetic surveys (EM38), pasture biomass via active optical sensors (CropCircle™) and topography via GPS elevation survey as potential indicators of RHC population density. A combination of these variables was used to produce risk maps with an accuracy of 88 % at predicting likely RHC density-categories on a dairy property in the Gippsland region of Victoria, Australia. This risk mapping protocol could be used to improve sampling programs and direct site-specific pest management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Berg, G. N. (2008). Biology, importance and management of the redheaded pasture cockchafer Adoryphorus couloni (Burmeister). A review of current knowledge prepared for GippsDairy Board Incorporated. Warragul, Australia: GippsDairy Board Incorporated.

    Google Scholar 

  • Berg, G. N., Williams, P., Bedding, R. A., & Akhurst, R. J. (1993). Biological control of redheaded pasture cockchafer, Adoryphorus couloni using nematodes. In E. S. Delfosse (Ed.), Pests of pastures—Weed Invertebrate and disease pests of Australian sheep pastures (pp. 313–315). East Melbourne: Publ. CSIRO.

    Google Scholar 

  • Bruce, R. J., Powell, K. S., Lamb, D. W., Hoffmann, A. A., & Runting, J. (2011). Towards improved early detection of grapevine phylloxeras (Daktulosphaira vitifoliae Fitch) using a risk-based assessment. Acta Horticulturae, 904, 123–131.

    Article  Google Scholar 

  • Candy, S. G., & McQuillan, P. B. (1998). A weight-based phenology model for immature stages of the red-headed cockchafer, Adoryphorus coulonii (Burmeister) (Coleoptera: Scarabaeidae: Dynastinae), a pest of pastures in south-eastern Australia. Australian Journal of Entomology, 37, 137–148.

    Article  Google Scholar 

  • Cosby, A. (2014). Developing a landscape risk assessment for the redheaded cockchafer (Adoryphorus couloni) in dairy pastures using precision agriculture sensors. Ph.D thesis, University of New England, Australia.

  • Cosby, A., Trotter, M., Lamb D., Falzon G., Stanley J., Powell, K. et al. (2012). Detection of pasture pests using proximal PA sensors: A preliminary study investigating the relationship between EM38, NDVI, elevation and redheaded cockchafer in the Gippsland region. In I. Yunusa (Ed.), Capturing Opportunities and Overcoming Obstacles in Australian Agronomy, Proceedings of 16th Australian Agronomy Conference. Armidale: Online Community Publishing.

  • Cosby, A., Trotter, M., Falzon, G., Stanley, J., Powell, K., Schneider, D., et al. (2013). Mapping redheaded cockchafer infestations in pastures—are PA tools up to the job? In John V Stafford (Ed.) Precision Agriculture ‘13, Proceedings of the 9th European Conference on Precision Agriculture (pp 585–592). The Netherlands: Wageningen Academic Publishers.

  • Cropmark Pasture Seeds. (2013). GrubOUT ® U2 endophyte. http://www.grubout.co.nz/Home.aspx. Accessed 20 May 2015.

  • Davidson, R. L., Wiseman, J. R., & Wolfe, V. J. (1972). Environmental stress in the pasture scarab Sericesthis nigrolineata Boisd. II. Effects of soil moisture and temperature on survival of first-instar larvae. Journal of Applied Ecology, 9, 799–806.

    Article  Google Scholar 

  • Douglas, M. H. (1972). Red-headed cockchafers can be controlled by pasture management. Journal of Agriculture, Melbourne, 70, 61–63.

    Google Scholar 

  • Ecogrow. (2013). Argentine Scarab Triple 150 million treats 200 m 2. http://www.ecogrow.com.au/zencart/index.php?main_page=product_info&cPath=9&products_id=14. Accessed 20 May 2015.

  • Evans, K., Webster, R., Barker, A., Halford, P., & Russell, M. (2003). Mapping infestations of potato cyst nematodes and the potential for spatially varying application of nematicide. Precision Agriculture, 4, 149–162.

    Article  Google Scholar 

  • Fleischer, S. J., Weisz, R., Smilowitz, Z., & Midgarden, D. (1997). Spatial variation in insect populations and site-specific integrated pest management. In F. J. Pierce & E. J. Sadler (Eds.), The state of site specific management for agriculture (pp. 101–130). Madison, WI: American Society of Agronomy.

    Google Scholar 

  • Flynn, E. S., Dougherty, C. T., & Wendroth, O. (2008). Assessment of pasture biomass with normalised difference vegetation index from active ground-based sensors. Agronomy Journal, 100, 114–121.

    Article  Google Scholar 

  • Hardy, R. J. (1981). Some aspects of the biology and behaviour of Adoryphorus couloni (Burmeister) (Coleoptera: Scarabaeidae: Dynastinae). Journal of the Australian Entomological Society, 20, 67–74.

    Article  Google Scholar 

  • Hardy, R. J., & Tandy, M. J. B. (1971). Red headed pasture cockchafer. Tasmanian Journal of Agriculture, 42, 263–267.

    Google Scholar 

  • Hbirkou, C., Welp, G., Rehbein, K., Hillnhutter, C., Daub, M., Oliver, M. A., et al. (2011). The effect of soil heterogeneity on the spatial distribution of Heterodera schachtii within sugar beet fields. Applied Soil Ecology, 51, 25–34.

    Article  Google Scholar 

  • Hossain, M. B., Lamb, D. W., Lockwood, P. V., & Frazier, P. (2010). EM38 for volumetric soil water content estimation in the root zone of deep vertosol soils. Computers and Electronics in Agriculture, 74, 100–109.

    Article  Google Scholar 

  • Karimzadeh, R., Jalil Hejazi, M., Helali, H., Irainipour, S., & Abolghasem Mohammadi, S. (2011). Assessing the impact of site-specific spraying on control of Eurygaster integriceps (Hemiptera: Scutelleridae) damage and natural enemies. Precision Agriculture, 12, 576–593.

    Article  Google Scholar 

  • Krell, K. R., Pedigo, L. P., & Babcock, B. A. (2003). Comparison of estimated costs and benefits of site-specific versus uniform management for the bean leaf beetle in soybean. Precision Agriculture, 4, 401–411.

    Article  Google Scholar 

  • Lamb, D. W., Frazier, P., & Adams, P. (2008). Improving pathways to adoption: Putting the right P’s in precision agriculture. Computers and Electronics in Agriculture, 61(1), 4–9.

    Article  Google Scholar 

  • Lamb, D. W., Mitchell, A., & Hyde, G. (2005). Vineyard trellising comprising steel posts distorts data from EM soil surveys. Australian Journal of Grape and Wine Research, 11, 24–32.

    Article  Google Scholar 

  • Limited, Geonics. (2003). EM38-ground conductivity meter operating manual. Mississauga, Ontario: Geonics Limited.

    Google Scholar 

  • Matthews, E. G. (1984). A Guide to the Genera of Beetles of South Australia Part 3 Polyphaga: Eucinetoidea, Dascilloidea and Scarabaeoidea. Adelaide: South Australian Museum.

    Google Scholar 

  • McNeill, J. D. (1980). Electromagnetic terrain conductivity measurement at low induction numbers. Technical Note TN-6. Mississauga, Ontario: Geonics Limited.

    Google Scholar 

  • Mickan, F. (2008). The redheaded pasture cockchafer. Victoria: Department of Primary Industries. Agriculture Notes AG1358.

    Google Scholar 

  • Miller, C., & Newell, B. (2013). Framing integrated research to address a dynamically complex issue: The red headed cockchafer challenge. Agricultural Systems, 117, 13–18.

    Article  Google Scholar 

  • Padhi, J., & Misra, R. K. (2011). Sensitivity of EM38 in determining soil water distribution in an irrigated wheat field. Soil and Tillage Research, 117, 93–102.

    Article  Google Scholar 

  • Park, Y., & Tollefson, J. J. (2005). Spatial prediction of corn rootworm (Coleoptera: Chrysomelidae) adult emergence in iowa cornfields. Journal of Economic Entomology, 98(1), 121–128.

    Article  PubMed  Google Scholar 

  • Plant, R. E. (2001). Site specific management: The application of information technology to crop production. Computers and Electronics in Agriculture, 30, 9–29.

    Article  Google Scholar 

  • Rath, A. C., & Pearn, S. G. (1993). Development of economic control of the root-feeding cockchafer, Adoryphorus couloni (Coleoptera: Scarabaeidae) with the fungus Metarhizium anisopliae. In E. S. Delfosse (Ed.), Pests of pastures. weed, invertebrate and disease pests of Australian sheep pastures (pp. 332–336). Melbourne, Australia: CSIRO Information Services.

    Google Scholar 

  • Roberts, R. J., & Morton, R. (1985). Biomass of larval Scarabaeidae (Coleoptera) in relation to grazing pressures in temperate sown grasslands. Journal of Applied Ecology, 22, 863–874.

    Article  Google Scholar 

  • Rouse, J.W., Haas, J.R., Schell, J.A., & Deering, D.W. (1974). Monitoring vegetation systems in the great plains with ERTS. In S Freden, E Mercanti, M Becker (Eds.), Third Earth Resources Technology Satellite-1 Symposium (pp. 309–317). Washington, DC: NASA US Government Printing Office.

  • Serrano, J. M., Peca, J. O., Marques da Silva, J. R., & Shaidian, S. (2010). Mapping soil and pasture variability with an electromagnetic induction sensor. Computer and Electronics in Agriculture, 73, 7–16.

    Article  Google Scholar 

  • Townsend, R. J., McNeill, M. R., & Jackson, T. A. (2008). Australian black beetle expansion through Christchurch City highlights a risk to pastoral agriculture on the Canterbury Plains. New Zealand Plant Protection, 61, 388.

    Google Scholar 

  • Trotter, M. G. (2010). Precision agriculture for pasture, rangeland and livestock systems. Food Security from Sustainable Agriculture. In H. Dove & R.A. Culvenor (Eds.), Proceedings of 15th Australian Agronomy Conference. Lincoln, New Zealand: Online Community Publishing.

  • Trotter, M. G., Lamb, D. W., Donald, G. E., & Schneider, D. A. (2010). Evaluating an active optical sensor for quantifying and mapping green herbage mass and growth in a perennial grass pasture. Crop and Pasture Science, 61, 389–398.

    Article  Google Scholar 

  • Willers, J. L., Jenkins, J. N., Lander, W. L., Gerard, P. D., Boykin, D. L., Hood, K. B., et al. (2005). Site-specific approaches to cotton insect control. Sampling and remote sensing analysis techniques. Precision Agriculture, 6, 431–452.

    Article  Google Scholar 

  • Whelan, B.M, McBratney, A.B., & Minasny, B. (2001). Vesper-spatial prediction software for precision agriculture. In G. Grenier & S. Blackmore (Eds.), Proceedings of the 3rd European conference on precision agriculture (pp. 139–144) France: Agro Montpellier.

  • Yemshanov, D., Koch, F. H., Ben-Haim, Y., & Smith, W. D. (2010). Robustness of risk maps and survey networks to knowledge gaps about a new invasive pest. Risk Analysis, 30(2), 261–276.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This project was funded by Dairy Australia, GippsDairy and the Gardiner Foundation. We also thank Rebecca Bruce (DPI Victoria) and Ian Faithfull for their skilled technical assistance and the farmers for access to their properties.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Cosby.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cosby, A.M., Falzon, G.A., Trotter, M.G. et al. Risk mapping of redheaded cockchafer (Adoryphorus couloni) (Burmeister) infestations using a combination of novel k-means clustering and on-the-go plant and soil sensing technologies. Precision Agric 17, 1–17 (2016). https://doi.org/10.1007/s11119-015-9403-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-015-9403-z

Keywords

Navigation