Skip to main content
Log in

Sectioning remote imagery for characterization of Avena sterilis infestations. Part A: Weed abundance

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Software was developed to spatially assess key crop characteristics from remotely sensed imagery. Sectioning and Assessment of Remote Images (SARI®), written in IDL® works as an add-on to ENVI®, has been developed to implement precision agriculture strategies. SARI® splits field plot images into grids of rectangular “micro-images” or “micro-plots”. The micro-plot length and width were defined as multiples of the image spatial resolution. SARI® calculates different indicators for each micro-plot, including the integrated pixel digital values. Studies on weed patches were done with SARI® using ground-truth data and remote images of two wheat plots infested with Avena sterilis at LaFloridaII and Navajas (Southern Spain). Patches of A. sterilis represented 47.5 and 19.2% of the field areas at the two locations, respectively; the infested areas were a combination of a few large and several small patches. At LaFloridaII, 2.1% of all patches were >500 m2 and 55.0% of all patches were smaller than 10 m2. Based on ground-truth weed abundance data, SARI® output includes geo-referenced and visual herbicide prescription maps, which could be used with variable-rate application equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Wild oat:

Avena sterilis sp. sterilis L.

Wheat:

Triticum durum L.

References

  • Barroso, J., Fernández-Quintanilla, C., Ruiz, D., Hernáiz, P., & Rew, L. J. (2004). Spatial stability of Avena sterilis ssp. ludoviciana populations under annual applications of low rates of imazamethabenz. Weed Research, 44, 178–186.

    Article  Google Scholar 

  • Barroso, J., Ruiz, D., Fernández-Quintanilla, C., Leguizamón, E. S., Hernaiz, P., Ribeiro, A., et al. (2005). Comparison of sampling methodologies for site-specific management of Avena sterilis. Weed Research, 45, 1–10.

    Article  Google Scholar 

  • Blackmore, S. (1996). An information system for precision farming. In Brighton conference on pests and diseases (Vol. 3, pp. 1207–1214). Alton, UK: British Crop Protection Council.

  • Chang, J., Clay, S. A., Clay, D. E., & Kevin, D. (2004). Detecting weed-free and weed-infested areas of a soybean field using near-infrared spectral data. Weed Science, 52, 642–646.

    Article  CAS  Google Scholar 

  • Christensen, S., Heisel, T., Walter, A. M., & Graglia, E. (2003). A decision algorithm for patch spraying. Weed Research, 43, 276–284.

    Article  Google Scholar 

  • DeCastro, A., Jurado-Expósito, M., Peña-Barragán, J. M., García-Torres, L., & López-Granados, F. (2009). Classification of Diplotaxis virgata and Sinapis arvensis in wheat, broad bean and peas using aerial images. In J. L. Gonzalez-Andujar (Ed.), Proceeding of the II weed science Iberian congress (Vol. 2, pp. 579–582). Lisbon, Portugal: ISA Press. (in Spanish).

    Google Scholar 

  • Ford, A. J., Dotray, P. A., Keeling, J. W., Wilkerson, J. B., Wilcut, J. W., & Gilbert, L. V. (2011). Site-specific weed management in cotton using WebHADSS. Weed Technology, 25, 107–112.

    Article  CAS  Google Scholar 

  • García-Torres, L., Gómez-Candón, D., Caballero-Novella, J. J., Gómez-Casero, M., Peña-Barragán, J. M., Jurado-Expósito, M., et al. (2010). Management of remote imagery for precision agriculture. In R. Khosla (Ed.), 10th conference on precision agriculture. Denver, CO: International Society of Precision Agriculture.

    Google Scholar 

  • García-Torres, L., López-Granados, F., Peña-Barragán, J. M., Caballero-Novella, J. J., & Jurado-Expósito, M. (24 June 2009). Automatic procedure to section remote images and to characterize agri-environmental indicators. PCTES2009/070247. Madrid: Spanish Office for Patents and Trademarks (in Spanish).

  • García-Torres, L., Peña-Barragán, J. M., Caballero-Novella, J. J., López-Granados, F., & Jurado-Expósito M. (2008a). SARI ® software, splitting and assessment of remote images, Office for the Registration of Intellectual Property. No. 200899900226820. Seville, Spain: Regional Department of Culture (in Spanish).

  • García-Torres, L., Peña-Barragán, J. M., López-Granados, F., Jurado-Expósito, M., & Fernández-Escobar, R. (2008b). Automatic assessment of agro-environmental indicators from remotely sensed images of tree orchards and its evaluation using olive plantations. Computers and Electronics in Agriculture, 61, 179–191.

    Article  Google Scholar 

  • Gerhards, R. (2010). Spatial and temporal dynamics of weed populations. In E.-C. Oerke et al. (Eds.), Precision crop protectionthe challenge and use of heterogeneity (Part 1, pp. 17–25). doi:10.1007/978-90-481-9277-9_2.

  • Gibson, K. D., Dirks, R., Medlin, C. R., & Johnston, L. (2004). Detection of weed species in soybean using multispectral digital images. Weed Technology, 18, 742–749.

    Article  Google Scholar 

  • Jordan, C. F. (1969). Derivation of leaf area index from quality of light on the forest floor. Ecology, 50, 663–666.

    Article  Google Scholar 

  • Jurado-Expósito, M., López-Granados, F., García-Torres, L., García-Ferrer, A., Sánchez de la Orden, M., & Atenciano, S. (2003). Multi-species weed spatial variability and site-specific management maps in cultivated sunflower. Weed Science, 51, 319–328.

    Article  Google Scholar 

  • Koger, H. K., Shaw, D. R., Watson, C. E., & Reddy, K. N. (2003). Detecting late-season weed infestations in soybean (Glycine max). Weed Technology, 17, 696–704.

    Article  Google Scholar 

  • Krohmann, P., Gerhards, R., & Kühbauch, W. (2006). Spatial and temporal definitions of weed patches using quantitative image analysis. Journal of Agronomy and Crop Science, 192, 72–78.

    Article  Google Scholar 

  • Kropff, M. J., Wallinga, J. & Lotz L. A. P. (1997). Modelling for precision weed management. In G. R. Bock & J. A. Goode (Eds.), Precision agriculture: Spatial and temporal variability of environmental quality (pp. 182–204). L. J. Ciba Foundation, Wiley.

  • Lamb, D. W., & Weedon, M. (1998). Evaluating accuracy of mapping weeds in fallow fields using airborne imaging: Panicum effusum in oil-seed rape stubble. Weed Research, 38, 443–451.

    Article  Google Scholar 

  • Lamb, D. W., Weedon, M., & Rew, R. J. (1999). Evaluating the accuracy of mapping weeds in seedling crops using airborne digital imagery: Avena spp. in seedling triticale. Weed Research, 39, 481–492.

    Article  Google Scholar 

  • Lancashire, P. D., Bleiholder, H., Van Den Doom, T., Langelüddeke, P., Srauss, R., Weber, E., et al. (1991). A uniform decimal code for growth stages of crops and weeds. Annals of Applied Biology, 119, 561–601.

    Article  Google Scholar 

  • Landis, J. R., & Kock, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33, 159–174.

    Article  PubMed  CAS  Google Scholar 

  • Lass, L. W., & Callihan, R. H. (1997). The effect of phenological stage on detectability of yellow hawkweed (Hieracium pratense) and oxeye daisy (Chysanthemum leucanthemum) with remote multispectral digital imagery. Weed Technology, 11, 248–256.

    Google Scholar 

  • Lass, L. W., Saffi, B., Price, W. J., & Thill, D. C. (2000). Assessing agreement in multispectral images of yellow starthistle (Centaurea solstitialis) with ground truth data using a Bayesian methodology. Weed Technology, 14, 539–544.

    Article  Google Scholar 

  • López-Granados, F., Jurado-Expósito, M., Peña-Barragán, J. M., & García-Torres, L. (2006). Using remote sensing for identification of late-season grass weed patches in wheat. Weed Science, 54, 346–353.

    Google Scholar 

  • MARM. (2011). Spanish Ministry of Environment, Rural and Marine. http://www.marm.es/es/estadistica/temas/encuesta-sobre-superficies-y-rendimientos-de-cultivos-esyrce-/. Madrid, Spain. Last Accessed 11 June 2011 (in Spanish).

  • Medlin, C. R., Shaw, D. R., Gerard, P. D., & Lamastus, F. E. (2000). Using remote sensing to detect weed infestations in Glycine max. Weed Science, 48, 393–398.

    Article  CAS  Google Scholar 

  • Peña-Barragán, J. M., López-Granados, F., Jurado-Expósito, M., & García-Torres, L. (2007). Mapping Ridolfia segetum patches in sunflower (Helianthus annuus L.) crop using remote sensing. Weed Research, 47, 164–172.

    Article  Google Scholar 

  • Rouse, J. W., Hass, R. H., Schell, J. A., & Deering, D. W. (1973). Monitoring vegetation systems in the Great Plains with ERTS. In RJW & RS (ed.), Proceedings of the earth research technology satellite symposium (Vol. 1, pp. 309–317). NASA SP-351.

  • Ruiz, D., Escribano, C., & Fernández-Quintanilla, C. (2006). Assessing the opportunity for site-specific management of Avena sterilis in winter barley fields in Spain. Weed Research, 46, 379–387.

    Article  Google Scholar 

  • Saavedra, M., Cuevas, J., Mesa-García, J., & García-Torres, L. (1989). Grassy weeds in winter cereals in Southern Spain. Crop Protection, 88, 181–187.

    Article  Google Scholar 

  • Thomlinson, J. R., Bolstad, P. V., & Cohen, W. B. (1999). Coordinating methodologies for scaling land-cover classifications from site-specific to global: steps toward validating global map product. Remote Sensing of the Environment, 70, 16–28.

    Article  Google Scholar 

  • Thompson, J. F., Stafford, J. V., & Miller, P. C. H. (1991). Potential for automatic weed detection and selective herbicide application. Crop Protection, 10, 254–259.

    Article  Google Scholar 

  • Thorp, K. R., & Tian, L. F. (2004). A review of remote sensing of weeds in agriculture. Precision Agriculture, 5, 477–508.

    Article  Google Scholar 

  • Timmermann, C., Gerhards, R., & Kühbauch, W. (2003). The economic impact of site-specific weed control. Precision Agriculture, 4, 249–260.

    Article  Google Scholar 

  • Vrindts, E., Baerdemaeker, J. D., & Ramon, H. (2002). Weed detection using canopy reflection. Precision Agriculture, 3, 63–80.

    Article  Google Scholar 

  • Wilson, B. J., & Brain, P. (1991). Long-term stability of distribution of Alopecurus myosuroides Huds. within cereal fields. Weed Research, 31, 367–373.

    Article  Google Scholar 

Download references

Acknowledgment

This research was partially financed by the Spanish Commission of Science and Technology through the projects AGL2007-60926 and AGL2010-15506.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis García-Torres.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez-Candón, D., López-Granados, F., Caballero-Novella, J.J. et al. Sectioning remote imagery for characterization of Avena sterilis infestations. Part A: Weed abundance. Precision Agric 13, 322–336 (2012). https://doi.org/10.1007/s11119-011-9249-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-011-9249-y

Keywords

Navigation