Skip to main content
Log in

Spectral signatures of sugar beet leaves for the detection and differentiation of diseases

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

This study examines the potential of hyperspectral sensor systems for the non-destructive detection and differentiation of plant diseases. In particular, a comparison of three fungal leaf diseases of sugar beet was conducted in order to facilitate a simplified and reproducible data analysis method for hyperspectral vegetation data. Reflectance spectra (400–1050 nm) of leaves infected with the fungal pathogens Cercospora beticola, Erysiphe betae, and Uromyces betae causing Cercospora leaf spot, powdery mildew and rust, respectively, were recorded repeatedly during pathogenesis with a spectro-radiometer and analyzed for disease-specific spectral signatures. Calculating the spectral difference and reflectance sensitivity for each wavelength emphasized regions of high interest in the visible and near infrared region of the spectral signatures. The best correlating spectral bands differed depending on the diseases. Spectral vegetation indices related to physiological parameters were calculated and correlated to the severity of diseases. The spectral vegetation indices Normalised Difference Vegetation Index (NDVI), Anthocyanin Reflectance Index (ARI) and modified Chlorophyll Absorption Integral (mCAI) differed in their ability to assess the different diseases at an early stage of disease development, or even before first symptoms became visible. Results suggested that a distinctive differentiation of the three sugar beet diseases using spectral vegetation indices is possible using two or more indices in combination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Blackburn, G. A. (1998). Quantifying chlorophylls and carotenoids at leaf and canopy scale: An evaluation of some hyperspectral approaches. Remote Sensing of the Environment, 66, 273–285.

    Article  Google Scholar 

  • Blackburn, G. A. (2007). Hyperspectral remote sensing of plant pigments. Journal of Experimental Botany, 58, 844–867.

    Google Scholar 

  • Bravo, C., Moushou, D., West, J., McCartney, A., & Ramon, H. (2003). Early disease detection in wheat fields using spectral reflectance. Biosystems Engineering, 84, 137–145.

    Article  Google Scholar 

  • Carter, G. A., & Knapp, A. K. (2001). Leaf optical properties in higher plants: Linking spectral characteristics to stress and chlorophyll concentration. American Journal of Botany, 88, 677–684.

    Article  CAS  PubMed  Google Scholar 

  • Daub, M. E., & Ehrenshaft, M. (2000). The photoactivated Cercospora toxin cercosporin: Contributions to plant disease and fundamental biology. Annual Review of Phytopathology, 38, 461–490.

    Article  CAS  PubMed  Google Scholar 

  • Delalieux, S., Somers, B., Verstaeten, W. W., Van Aardt, J. A. N., Keulemans, W., & Coppin, P. (2009). Hyperspectral indices to diagnose leaf biotic stress of apple plants, considering leaf phenology. International Journal of Remote Sensing, 30, 1887–1912.

    Article  Google Scholar 

  • Delalieux, S., van Aardt, J., Kelemans, W., & Coppin, P. (2007). Detection of biotic stress (Venturia inaequalis) in apple trees using hyperspectral data: Non-parametric statistical approaches and physiological implications. European Journal of Agronomy, 27, 130–143.

    Article  Google Scholar 

  • Francis, S. (2002). Sugar-beet powdery mildew (Erysiphe betae). Molecular Plant Pathology, 3, 119–124.

    Article  PubMed  Google Scholar 

  • Gamon, J. A., & Surfus, J. S. (1999). Assessing leaf pigment content and activity with a reflectometer. New Phytologist, 143, 105–117.

    Article  CAS  Google Scholar 

  • Gitelson, A. A., Gritz, Y., & Merzylak, M. N. (2003). Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of Plant Physiology, 160, 271–282.

    Article  CAS  PubMed  Google Scholar 

  • Gitelson, A. A., Kaufman, Y. J., Stark, R., & Rundquist, D. (2002). Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of the Environment, 80, 76–87.

    Article  Google Scholar 

  • Gitelson, A. A., Merzlyak, M. N., & Chivkunova, O. B. (2001). Optical properties and nondestructive estimation of anthocyanin content in plant leaves. Photochemistry and Photobiology, 74, 38–45.

    Article  CAS  PubMed  Google Scholar 

  • Guyot, G., & Baret, F. (1988). Utilisation de la haute résolution spectrale pour suivre l’état des couverts végétaux [Utilisation of high spectral resolution for monitoring vegetation condition]. In T. D. Guyenne & J. J. Hunt (Eds.), Proceedings of 4th international colloquim spectral signatures of objects in remote sensing, proceedings of the conference held 18–22 January 1988 in Aussois (Modane), France (pp. 279–286). ESA SP-287. European Space Agency

  • Hatfield, J. L., Gitelson, A. A., Schepers, J. S., & Walthall, C. L. (2008). Application of spectral remote sensing for agronomic decisions. Agronomy Journal, 100, 117–131.

    Article  Google Scholar 

  • Heath, M. C. (1997). Signalling between pathogenic rust fungi and resistant of susceptible host plants. Annals of Botany, 80, 713–720.

    Article  CAS  Google Scholar 

  • Hillnhuetter, C., & Mahlein, A.-K. (2008). Early detection and localisation of sugar beet diseases: New approaches. Gesunde Pflanzen, 60(4), 143–149.

    Article  Google Scholar 

  • Jacquemoud, S., & Baret, F. (1990). PROSPECT: A model of leaf optical properties spectra. Remote Sensing of Environment, 34, 75–91.

    Article  Google Scholar 

  • Jing, L., Jinbao, J., Yunhao, C., Yuanyuan, W., Wei, S., & Wenjiang, H. (2007). Using hyperspectral indices to estimate foliar chlorophyll a concentrations of winter wheat under yellow rust stress. New Zealand Journal of Agricultural Research, 50, 1031–1036.

    Google Scholar 

  • Jones, H. G., Archer, N., Rotenburg, E., & Casa, R. (2003). Radiation measurement for plant ecophysiology. Journal of Experimental Botany, 54, 879–889.

    Article  CAS  PubMed  Google Scholar 

  • Jones, J. D. G., & Dangl, J. L. (2006). The plant immune system. Nature, 444, 323–329.

    Article  CAS  PubMed  Google Scholar 

  • Knogge, W. (1996). Fungal infections of plants. The Plant Cell, 8, 1711–1722.

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi, T., Kanda, E., Kitada, K., Ishiguro, K., & Torigoe, Y. (2001). Detection of rice panicle blast with multispectral radiometer and the potential of using airborne multispectral scanners. Phytopathology, 91, 316–323.

    Article  PubMed  Google Scholar 

  • Larsolle, A., & Hamid Muhammed, H. (2007). Measuring crop status using multivariate analysis of hyperspectral field reflectance with application to disease severity and plant density. Precision Agriculture, 8, 37–47.

    Article  Google Scholar 

  • Laudien, R. (2005). Entwicklung eines GIS-gestützten schlagbezogenen Führungsinformationssystems für die Zuckerwirtschaft. [Development of a field- and GIS-based management information system for the sugar beet industry] PhD thesis, University of Hohenheim.

  • Le Maire, G., Francois, C., & Dufrene, E. (2004). Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. Remote Sensing of Environment, 89, 1–28.

    Article  Google Scholar 

  • Mahlein, A.-K., Hillnhütter, C., Mewes, T., Scholz, C., Steiner, U., Dehne, H.-W., & Oerke, E.-C. (2009). Disease detection in sugar beet fields: A multi-temporal and multi-sensoral approach on different scales. In C. M. U. Neale & A. Maltese (Eds.), Proceedings of the SPIE Europe conference on remote sensing (Vol. 7472, pp. 747228–747228-10).

  • Malthus, T. J., & Madeira, A. C. (1993). High resolution spectroradiometry: Spectral reflectance of field bean leaves infected by Botrytis fabae. Remote Sensing of Environment, 45, 107–116.

    Article  Google Scholar 

  • Meier, U., Bachmann, L., Buhtz, H., Hack, H., Klose, R., Märländer, B., et al. (1993). Phänologische Entwick-lungsstadien der Beta-Rüben (Beta vulgaris L. ssp.). Codierung und Beschreibung nach der erweiterten BBCH-Skala (mit Abbildungen). [Phenological growth stages of sugar beet (Beta vulgaris L. ssp.) Codification and description according to the general BBCH scale (with figures).]. Nachrichtenbl Deut Pflanzenschutzd, 45, 37–41.

    Google Scholar 

  • Mendgen, K., & Hahn, M. (2002). Plant infection and the establishment of fungal biotrophy. Trends in Plant Science, 7, 352–356.

    Article  CAS  PubMed  Google Scholar 

  • Moran, M. S., Inoue, Y., & Barnes, E. M. (1997). Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sensing of the Environment, 61, 319–346.

    Article  Google Scholar 

  • Naidu, R. A., Perry, E. M., Pierce, F. J., & Mekuria, T. (2009). The potential of spectral reflectance technique for the detection of grapevine leafroll-associated virus-3 in two red-berried wine grape cultivars. Computers and Electronics in Agriculture, 66, 38–45.

    Article  Google Scholar 

  • Nilsson, H.-E. (1995). Remote sensing and image analysis in plant pathology. Annual Review of Phytopathology, 15, 489–527.

    Article  Google Scholar 

  • Nutter, F. W., Jr., Littrell, R. H., & Brennemann, T. B. (1990). Utilization of a multispectral radiometer to evaluate fungicide efficacy to control late leaf spot in peanut. Phytopathology, 80, 102–108.

    Article  Google Scholar 

  • Penuelas, J., Baret, F., & Filella, I. (1995). Semiempirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica, 31, 221–230.

    CAS  Google Scholar 

  • Pietrzykowski, E., Stone, C., Pinkard, E., & Mohammed, C. (2006). Effects of Mycosphaerella leaf disease on the spectral reflectance properties of juvenile Eucalyptus globules foliage. Forest Pathology, 36, 334–348.

    Article  Google Scholar 

  • Pinter, P. J., Hatfield, J. L., Schepers, J. S., Barnes, E. M., Moran, M. S., Daugthry, C. S. T., et al. (2003). Remote sensing for crop management. Photogrammetric Engineering and Remote Sensing, 69, 647–664.

    Google Scholar 

  • Richardson, A. D., Duigan, S. P., & Berlyn, G. P. (2001). An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytologist, 153, 185–194.

    Article  Google Scholar 

  • Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1974). Monitoring vegetation systems in the Great Plains with ERTS. In Proceedings of the third earth resources technology satellite-1 symposium (pp. 301–317). Greenbelt, MD: NASA.

  • Stafford, J. V. (2000). Implementing precision agriculture in the 21st century. Journal Agricultural Engineering Research, 76, 267–275.

    Article  Google Scholar 

  • Steddom, K., Bredehoeft, M. W., Khan, M., & Rush, C. M. (2005). Comparison of visual and multispectral radiometric disease evaluations of Cercospora leaf spot of sugar beet. Plant Disease, 89, 153–158.

    Article  Google Scholar 

  • Steddom, K., Heidel, G., Jones, D., & Rush, C. M. (2003). Remote detection of rhizomania in sugar beets. Phytopathology, 93, 720–726.

    Article  CAS  PubMed  Google Scholar 

  • Thenkabail, P. S., Smith, R. B., & De Pauw, E. (2000). Hyperspectral vegetation indices and their relationship with agricultural crop characteristics. Remote Sensing of Environment, 71, 158–182.

    Article  Google Scholar 

  • Van Kan, J. A. L. (2006). Licensed to kill: The lifestyle of a necrotrophic plant pathogen. Trends in Plant Science, 11, 247–253.

    Article  PubMed  Google Scholar 

  • West, J. S., Bravo, C., Oberti, R., Lemaire, D., Moshou, D., & McCartney, H. A. (2003). The potential of optical canopy measurement for targeted control of field crop diseases. Annual Review of Phytopathology, 41, 593–614.

    Article  CAS  PubMed  Google Scholar 

  • Wolf, P. F. J., & Verreet, J. A. (2002). The IPM sugar beet model, an integrated pest management system in Germany for the control of fungal leaf diseases in sugar beet. Plant Diseases, 86, 336–344.

    Article  Google Scholar 

  • Zhang, M., Liu, X., & O’Neill, M. (2002). Spectral discrimination of Phytophthora infestans infections on tomatoes based on principal component and cluster analyses. International Journal of Remote Sensing, 23, 1095–1107.

    Article  Google Scholar 

Download references

Acknowledgments

This study has been conducted within the Research Training Group 722 ‘Information Techniques for Precision Crop Protection’, funded by the German Research Foundation (DFG). The authors further would like to thank Prof. Gunter Menz, Dr. Jonas Franke and Thorsten Mewes who provided the ASD FieldSpec Pro FR spectrometer and for technical assistance during hyperspectral measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.-K. Mahlein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahlein, AK., Steiner, U., Dehne, HW. et al. Spectral signatures of sugar beet leaves for the detection and differentiation of diseases. Precision Agric 11, 413–431 (2010). https://doi.org/10.1007/s11119-010-9180-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-010-9180-7

Keywords

Navigation