Skip to main content
Log in

The n Linear Embedding Theorem

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

Let σ i , i = 1,…, n, denote positive Borel measures on \(\mathbb {R}^{d}\), let \(\mathcal {D}\) denote the usual collection of dyadic cubes in \(\mathbb {R}^{d}\) and let \(K:\,\mathcal {D}\to [0,\infty )\) be a map. In this paper we give a characterization of the n linear embedding theorem. That is, we give a characterization of the inequality

$$\sum\limits_{Q\in\mathcal{D}} K(Q)\prod\limits_{i=1}^{n}\left|{\int}_{Q}f_{i}\,d{\sigma}_{i}\right| \le C\prod\limits_{i=1}^{n} \|f_{i}\|_{L^{p_{i}}(d{\sigma}_{i})} $$

in terms of the multilinear Sawyer testing conditions and the n weight discrete Wolff potential conditions, when 1 < p i < .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cascante, C., Ortega, J.: On the boundedness of discrete Wolff potentials. Ann. Sc. Norm. Super. Pisa Cl. Sci. 5 8(2), 309–331 (2009)

    MathSciNet  MATH  Google Scholar 

  2. Cascante, C., Ortega, J., Verbitsky, I.: Wolff’s inequality for radially nonincreasing kernels and applications to trace inequalities. Potential Anal. 16(4), 347–372 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cascante, C., Ortega, J., Verbitsky, I.: Nonlinear potentials and two-weight trace inequalities for general dyadic and radial kernels. Indiana Univ. Math. J. 53(3), 845–882 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cascante, C., Ortega, J., Verbitsky, I.: On L p- L q trace inequalities. J. London Math. Soc. 74(2), 497–511 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hänninen, T., Hytönen, T., Li, K.: Two-weight L p- L q bounds for positive dyadic operators: unified approach to pq and p > q, Preprint (2014). arXiv:1412.2593 [math.CA]

  6. Hedberg, L., Wolff, T.: Thin sets in nonlinear potential theory. Ann. Inst. Fourier (Grenoble) 33(4), 161–187 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hytönen, T. : The A 2 theorem: remarks and complements, Harmonic analysis and partial differential equations, 91–106. American Mathematical Society, Providence, RI (2014). arXiv:1212.3840 [math.CA]

  8. Lacey, M., Sawyer, E., Uriarte-Tuero, I.: Two weight inequalities for discrete positive operators, Preprint (2009). arXiv:0911.3437 [math.CA]

  9. Lacey, M., Sawyer, E., Shen, C.-Y., Uriarte-Tuero, I.: Two-weight inequality for the Hilbert transform: A real variable characterization, I. Duke Math. J. 163(15), 2795–2820 (2014). arXiv:1201.4319 [math.CA]

    Article  MathSciNet  MATH  Google Scholar 

  10. Li, K., Sun, W.: Two weight norm inequalities for the bilinear fractional integral, Preprint (2013). arXiv:1312.7707v2 [math.CA]

  11. Nazarov, F., Treil, S., Volberg, A.: The Bellman functions and two-weight inequalities for Haar multipliers. J. Amer. Math. Soc. 12(4), 909–928 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Sawyer, E.: A characterization of a two-weight norm inequality for maximal operators. Studia Math. 75(1), 1–11 (1982)

    MathSciNet  MATH  Google Scholar 

  13. Sawyer, E.: A characterization of two-weight norm inequalities for fractional and Poisson integrals. Trans. Amer. Math. Soc. 308(2), 533–545 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. Tanaka, H.: Two-weight norm inequalities for potential type integral operators in the case p > q > 0 and p > 1. Studia Math. 216(1), 1–15 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Tanaka, H.: A characterization of two-weight trace inequalities for positive dyadic operators in the upper triangle case. Potential Anal. 41(2), 487–499 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Tanaka, H.: The trilinear embedding theorem. Studia Math. 227(3), 238–249 (2015). arXiv:1404.2694 [math.CA]

  17. Tanaka, H., Gunawan, H: The local trace inequality for potential type integral operators. Potential Anal. 38(2), 653–681 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tanaka, H., Terasawa, Y.: Positive operators and maximal operators in a filtered measure space. J. Funct. Anal. 264(4), 920–946 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Treil, S.: A remark on two-weight estimates for positive dyadic operators, Preprint (2012). arXiv:1201.1455 [math.CA]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Tanaka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, H. The n Linear Embedding Theorem. Potential Anal 44, 793–809 (2016). https://doi.org/10.1007/s11118-015-9531-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-015-9531-0

Keywords

Mathematics Subject Classification (2010)

Navigation