Skip to main content
Log in

Study on the similarity of photonic crystal ring resonator cavity modes and whispering-gallery-like modes in order to design more efficient optical power dividers

  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

In this study, we discuss the wave pattern characteristics of confined cavity modes inside photonic crystal ring resonators (PCRRs). Despite different physical origins, these cavity modes are analogous to the whispering-gallery (WG-like) modes. Because of the absence of perfectly circular symmetry in our PC cavity, the WG-like modes are not degenerate, but they form a close doublet in which the field pattern of each of these doublets repeats itself by \(180^{\circ }/m\) where “m” is the azimuthal index number of WG-like modes. The cavity modes are named according to their symmetric field pattern, and WG-like ones are named by their azimuthal mode numbers “m.” Based on the study of these similarities, we propose a \(1\times 2\) and a \(1\times 4\) T-junction- like power dividers. Through study of the similar properties of these cavity modes with WG-like modes, we have enhanced the output power of both dividers to 49.6 and 24.5 %, respectively. The permittivity of the hexagonal photonic crystal rod is \(\varepsilon _{h}= 12.04\) surrounded by air as the background medium. For our PCRR, the dominant resonating mode is the cavity mode with hexapole field pattern or equivalently WG-like mode with azimuthal mode number of \(m\,=\,6\). The normalized frequencies for this mode and its doublet are \(a/\lambda = 0.348066\) and 0.348301, respectively. The photonic band structure, PC waveguide guided mode and electric field patterns of the confined cavity modes inside the PCRR are calculated using the PWE method, and the transmission spectra are calculated by means of 2D-FDTD simulation method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Joannopoulos, J., Johnson, S.G., Winn, J.N., Meade, R.D.: Photonic Crystal: Molding the Flow of Light, 2nd edn. Princeton University Press, New Jersey (2008)

    MATH  Google Scholar 

  2. Li, J.-S.: Novel optical modulator using silicon photonic crystals. Opt. Laser Technol. 40, 790–794 (2008)

    Article  Google Scholar 

  3. Banaei, H., Rostami, A.: A novel proposal for passive all-optical demultiplexer for DWDM systems using 2-D photonic crystals. J. Electromagn. Waves Appl. 22, 471–482 (2008)

    Article  Google Scholar 

  4. Tavousi, A., Mansouri-Birjandi, M.A.: Performance evaluation of photonic crystal ring resonators based optical channel add-drop filters with the aid of whispering gallery modes and their Q-factor. Opt. Quantum Electron. 47, 1613–1625 (2015)

  5. Shuo, L., Shu-Guang, L., Ying, D.: Analysis of the characteristics of the polarization splitter based on tellurite glass dual-core photonic crystal fiber. Opt. Laser Technol. 44, 1813–1817 (2012)

    Article  Google Scholar 

  6. Li, J., Wang, J., Wang, R., Liu, Y.: A novel polarization splitter based on dual-core hybrid photonic crystal fibers. Opt. Laser Technol. 43, 795–800 (2011)

    Article  Google Scholar 

  7. Liu, W., Yang, D., Shen, G., Tian, H., Ji, Y.: Design of ultra compact all-optical XOR, XNOR, NAND and OR gates using photonic crystal multi-mode interference waveguides. Opt. Laser Technol. 50, 55–64 (2013)

    Article  Google Scholar 

  8. Dey, R.: Optical power splitting techniques using photonic crystal line defect waveguides. University of Western Ontario—Electronic Thesis and Dissertation Repository (2011)

  9. Chung, K., Yoon, J.: Properties of a \(1\times 4\) optical power splitter made of photonic crystal waveguides. Opt. Quantum Electron. 35, 959–966 (2003)

    Article  Google Scholar 

  10. Nozhat, N., Granpayeh, N.: Analysis and simulation of a photonic crystal power divider. J. Appl. Sci. 7, 3576–3579 (2007)

    Article  Google Scholar 

  11. Ghaffari, A., Monifi, F., Djavid, M., Abrishamian, M.: Photonic crystal bends and power splitters based on ring resonators. Opt. Commun. 281, 5929–5934 (2008)

    Article  Google Scholar 

  12. Fan, S., Johnson, S.G., Joannopoulos, J., Manolatou, C., Haus, H.: Waveguide branches in photonic crystals. JOSA B 18, 162–165 (2001)

    Article  Google Scholar 

  13. Bayindir, M., Temelkuran, B., Ozbay, E.: Photonic-crystal-based beam splitters. Appl. Phys. Lett. 77, 3902–3904 (2000)

    Article  Google Scholar 

  14. Boscolo, S., Midrio, M., Krauss, T.: Y junctions in photonic crystal channel waveguides: high transmission and impedance matching. Opt. Lett. 27, 1001–1003 (2002)

    Article  Google Scholar 

  15. Frandsen, L.H., Borel, P.I., Zhuang, Y., Harpøth, A., Thorhauge, M., Kristensen, M., Bogaerts, W., Dumon, P., Baets, R., Wiaux, V.: Ultralow-loss 3-dB photonic crystal waveguide splitter. Opt. Lett. 29, 1623–1625 (2004)

    Article  Google Scholar 

  16. Wilson, R., Karle, T.J., Moerman, I., Krauss, T.F.: Efficient photonic crystal Y-junctions. J. Opt. A Pure Appl. Opt. 5, S76 (2003)

    Article  Google Scholar 

  17. Lin, S., Chow, E., Bur, J., Johnson, S., Joannopoulos, J.: Low-loss, wide-angle Y splitter at approximately \(\sim \)1.6 \(\mu \)m wavelengths built with a two-dimensional photonic crystal. Opt. Lett. 27, 1400–1402 (2002)

    Article  Google Scholar 

  18. Hao, G., Li-guang, F., Xiao-hua, W., Tian-bao, Y., Qing-hua, L., Yong-zhen, H.: Heterostructure ultracompact multiway beam splitter using photonic crystal ring resonator. Acta Photonica Sin. 39, 1198–1202 (2010)

    Article  Google Scholar 

  19. Yu, T., He, L., Deng, X., Fang, L., Liu, N.: Power splitter based on photonic crystal waveguides with an air holes array. Opt. Eng. 50, 114601–114604 (2011)

    Article  Google Scholar 

  20. Djavid, M., Ghaffari, A., Monifi, F., Abrishamian, M.S.: Photonic crystal power dividers using L-shaped bend based on ring resonators. JOSA B 25, 1231–1235 (2008)

    Article  Google Scholar 

  21. Park, I., Lee, H.-S., Kim, H.-J., Moon, K.-M., Lee, S.-G., Park, S.-G., Lee, E.-H.: Photonic crystal power-splitter based on directional coupling. Opt. Expr. 12, 3599–3604 (2004)

    Article  Google Scholar 

  22. Ren, H., Jiang, C., Hu, W., Gao, M., Wang, J.: Photonic crystal power-splitter based on mode splitting of directional coupling waveguides. Opt. Quantum Electron. 38, 645–654 (2006)

    Article  Google Scholar 

  23. Dong-Xia, Z., Xi-Yao, C., Jun-Jun, L., Ze-Xuan, Q., Jun-Zhen, J., Zhi-Yong, C., Yi-Shen, Q., Hui, L.: The \(1\times 4\) optical splitters based on silicon photonic crystal self-collimation ring resonators. Chin. Phys. Lett. 29, 124201 (2012)

    Article  Google Scholar 

  24. Zhang, Y., Liu, L., Wu, X., Xu, L.: Splitting-on-demand optical power splitters using multimode interference (MMI) waveguide with programmed modulations. Opt. Commun. 281, 426–432 (2008)

    Article  Google Scholar 

  25. Ma, Z., Ogusu, K.: Power splitter based on cascaded multimode photonic crystal waveguides with triangular lattice of air holes. Opt. Commun. 282, 3473–3476 (2009)

    Article  Google Scholar 

  26. Yu, T.B., Wang, Q.J., Zhang, J., Yang, J.Y., Yu, S.F.: Ultracompact 2 2 photonic crystal waveguide power splitter based on self-imaging effect realized by asymmetric interference. Photonics Technol. Lett. IEEE 23, 1151–1153 (2011)

    Article  Google Scholar 

  27. Esmaieli, A., Ghayour, R.: Magneto-optical photonic crystal \(1\times 3\) switchable power divider. Photonics Nanostructures Fundam. Appl. 10, 131–139 (2012)

    Article  Google Scholar 

  28. Vahala, K.J.: Optical microcavities. Nature 424, 839–846 (2003)

    Article  Google Scholar 

  29. Ghasemi, V.K.H.: Design tunable optical thin film Fabry-Perot Filter in dense wavelength division multiplexer. Majlesi J. Telecommun. Devices 2, 25–29 (2013)

  30. Hodgson, N., Weber, H.: Optical Resonators: Fundamentals, Advanced Concepts, Applications. Springer, Berlin (2005)

    Google Scholar 

  31. Matsko, A., Savchenkov, A., Strekalov, D., Ilchenko, V., Maleki, L.: Review of applications of whispering-gallery mode resonators in photonics and nonlinear optics. IPN Prog. Rep. 42, 162 (2005)

    MATH  Google Scholar 

  32. Heebner, J., Grover, R., Ibrahim, T., Ibrahim, T.A.: Optical Microresonators: Theory, Fabrication, and Applications. Springer, Berlin (2008)

    Google Scholar 

  33. Yariv, A., Yeh, P.: Photonics: Optical Electronics in Modern Communications (The Oxford Series in Electrical and Computer Engineering). Oxford University Press, Inc, Oxford (2006)

    Google Scholar 

  34. Xiao, Y.-F., Min, B., Jiang, X., Dong, C.-H., Yang, L.: Coupling whispering-gallery-mode microcavities with modal coupling mechanism. Quantum Electron. IEEE J. 44, 1065–1070 (2008)

    Article  Google Scholar 

  35. Djavid, M., Ghaffari, A., Monifi, F., Abrishamian, M.S.: T-shaped channel-drop filters using photonic crystal ring resonators. Phys. E Low Dimens. Syst. Nanostructures 40, 3151–3154 (2008)

    Article  Google Scholar 

  36. Ryu, H.-Y., Hwang, J.-K., Lee, Y.-H.: The smallest possible whispering-gallery-like mode in the square lattice photonic-crystal slab single-defect cavity. Quantum Electron. IEEE J. 39, 314–322 (2003)

    Article  Google Scholar 

  37. Ryu, H.-Y., Kim, S.-H., Park, H.-G., Hwang, J.-K., Lee, Y.-H., Kim, J.-S.: Square-lattice photonic band-gap single-cell laser operating in the lowest-order whispering gallery mode. Appl. Phys. Lett. 80, 3883–3885 (2002)

    Article  Google Scholar 

  38. Ryu, H.-Y., Notomi, M., Lee, Y.-H.: High-quality-factor and small-mode-volume hexapole modes in photonic-crystal-slab nanocavities. Appl. Phys. Lett. 83, 4294–4296 (2003)

    Article  Google Scholar 

  39. Johnson, S., Joannopoulos, J.: Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Opt. Expr. 8, 173–190 (2001)

    Article  Google Scholar 

  40. Stieler, D.P.: Characterization of Defect Cavities and Cdrop Filters in the Three Dimensional Woodpile Photonic Crystal, Electrical and Computer Engineering. Iowa State University, Ames (2008)

    Google Scholar 

  41. Yee, K.S.: Numerical solution of initial boundary value problems involving Maxwell’s equations. IEEE Trans. Antennas Propag. 14, 302–307 (1966)

    Article  MATH  Google Scholar 

  42. Boriskin, A.V., Boriskina, S.V., Rolland, A., Sauleau, R., Nosich, A.I.: Test of the FDTD accuracy in the analysis of the scattering resonances associated with high-Q whispering-gallery modes of a circular cylinder. JOSA A 25, 1169–1173 (2008)

    Article  Google Scholar 

  43. Sakai, A., Baba, T.: FDTD simulation of photonic devices and circuits based on circular and fan-shaped microdisks. J. Lightwave Technol. 17, 1493 (1999)

    Article  Google Scholar 

  44. Liu, Y., Sarris, C.D.: Fast time-domain simulation of optical waveguide structures with a multilevel dynamically adaptive mesh refinement FDTD approach. J. Lightwave Technol. 24, 3235 (2006)

    Article  Google Scholar 

  45. Shlager, K.L., Schneider, J.B.: A selective survey of the finite-difference time-domain literature. Antennas Propag. Mag. IEEE 37, 39–57 (1995)

    Article  Google Scholar 

  46. Yu, T., Zhou, H., Yang, J., Jiang, X., Wang, M.: Ultracompact multiway beam splitters using multiple coupled photonic crystal waveguides. J. Phys. D Appl. Phys. 41, 1–5 (2008)

    Article  Google Scholar 

  47. Hu, P., Guo, H., Liao, Q.: Large separating angle multiway beam splitter based on photonic crystal ring resonators, communications and photonics conference and exhibition (ACP). Asia 2009, 1–6 (2009)

    Google Scholar 

  48. Taflove, A., Hagness, S.C.: Comput. Electrodyn. Artech house, Boston (2000)

  49. Berenger, J.-P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  50. Qiang, Z., Zhou, W., Soref, R.A.: Optical add-drop filters based on photonic crystal ring resonators. Opt. Expr. 15, 1823–1831 (2007)

    Article  Google Scholar 

  51. Matsko, A.B., Ilchenko, V.S.: Optical resonators with whispering gallery modes I: basics, IEEE J. Sel. Top. Quantum Electron, 12 (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Tavousi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavousi, A., Mansouri-Birjandi, M.A. Study on the similarity of photonic crystal ring resonator cavity modes and whispering-gallery-like modes in order to design more efficient optical power dividers. Photon Netw Commun 32, 160–170 (2016). https://doi.org/10.1007/s11107-015-0592-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-015-0592-1

Keywords

Navigation