Skip to main content

Advertisement

Log in

Blocking probability in optical interconnects in data center networks

  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

Cloud computing and Web-based applications are creating a need for powerful data centers. Data centers have a great need for high bandwidth, low latency, low blocking probability, and low bit-error rate to sustain the interaction between different applications. Current data center networks (DCNs) suffer from several problems such as high-energy consumption, high latency, fixed throughput of links, and limited reconfigurability. Electronic switches are low radix and have high latency due to a large hop count since each hop employs a store-and-forward mechanism. Optical interconnects, on the other hand, offer several advantages such as low-energy consumption, high bandwidth, reconfigurability, malleability to changing traffic, high-radix switch design, fast switching transition times, and wavelength multiplexing. These benefits provide the incentive to shift from electrical interconnects to optical interconnects in DCNs. Despite several advantages over their electrical counterparts, the performance of optical interconnects can be further improved by considering some performance parameters of optical interconnects. One such important parameter for the performance of any communication network is the blocking probability. This paper makes a comprehensive investigation of the performance of optical interconnects in different DCN architectures on the basis of blocking probability and concludes by suggesting ways to reduce the blocking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

References

  1. Kachris, C., Tomkos, I.: Power consumption evaluation of all-optical data center networks. Springer Cloud Comput. J. 16(3), 611–623 (2013). doi:10.1007/s10586-012-0227-6

    Google Scholar 

  2. Cui, H., Rasooly, D., Ribeiro, M.R.N., Kazovsky, L.: ‘Optically cross-braced Hypercube: a reconfigurable physical layer for interconnects and server centric data centers’. Optical Fiber Communication Conference and Exposition, pp. 1–2, (2012). doi:10.1364/OFC.2012.OW3J.1

  3. Xu, L., Singh, A., Zhang, Y.: ‘Optically interconnected data center networks’. OFC/NFOEC Technical Digest, (2012). doi:10.1364/OFC.2012.OW3J.3

  4. Miller, D.A.B.: Device requirements for optical interconnects to silicon chips. Proc. IEEE, 97(7), 1166–1185 (2009). doi:10.1109/JPROC.2009.2014298

  5. Tucker, R.S.: Green optical communicationspart II: Energy limitations in networks. IEEE J. Sel. Top. Quantum Electron. 17(2), 261–274 (2010). doi:10.1109/JSTQE.2010.2051217

    Article  Google Scholar 

  6. Wang, H., Bergman K.: Optically interconnected data center architecture for bandwidth intensive energy efficient networking. IEEE 14th International Conference on Transparent Optical Networks (ICTON), pp. 1–4. (2012). doi:10.1109/ICTON.2012.6253873

  7. Xu, L., Zhang, W., Lira, H.L.R., Lipson, M., Bergman, K.: A hybrid optical packet and wavelength selective switching platform for high performance data center networks. Opt. Express 19(24), 24258–24267 (2011). doi:10.1364/OE.19.024258

    Article  Google Scholar 

  8. Chen, K., Singla, A., Singh, A., Ramachandran, K., Xu, L., Zhang, Y., Wen, X., Chen, Y.: OSA: an optical switching architecture for data center networks with unprecedented flexibility. Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation, pp. 498–511 (2012). doi:10.1109/TNET.2013.2253120

  9. Proietti, R., Ye, X., Yin, Y., Potter, A., Yu, R., Kurumida, J., Akella, V., Ben Yoo, S.J.: 40 Gb/s \(8\times 8\) low latency optical switch for data centers. Optical Fiber Communication Conference. doi:10.1364/OFC.2011.OMV4

  10. Fat tree topology: http://en.wikipedia.org/wiki/Fat_tree, last accessed: 18 Sept 2014

  11. Kim, J., Dally, W.J., Abts, D.: Flattened Butterfly: A cost-efficient topology for high-radix networks. ISCA’07 Proceedings of the 34th Annual International Symposium on Computer Architecture, 35(2), pp. 126–137 (2007)

  12. Calabretta, N., Luo, J., Lucente, S.D., Dorren, H.: Experimental assessment of low latency and large port count OPS for data center network interconnects. 14th International Conference on Transparent Optical Networks, pp. 1–4. (2012). doi:10.1109/ICTON.2012.6254381

  13. Brunina, D., Lai, C.P., Garg, A.S., Bergman, K.: Building data centers with optically connected memory. J. Opt. Commun. Netw. 3(8), A40–A48 (2011). doi:10.1364/JOCN.3.000A40

    Article  Google Scholar 

  14. http://www.isi.edu/nsnam/ns/. Last Accessed Aug 2014

  15. http://storageservers.wordpress.com/2013/07/17/facts-and-stats-of-worlds-largest-data-centers/. Last Accessed 8 Jan 2015

  16. Singla, A., Singh, A., Ramachandran, K., Xu, L., Zhang, Y.: Proteus: a topology malleable data center network. Hotnets-IX Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topicsin Networks, Article No 8, (2010). doi:10.1145/1868447.1868455

  17. Xi, K., Kao, Y.-H., Jonathan Chao, H.: Petabit optical switch for data center networks. http://eeweb.poly.edu/chao/publications/petasw. Last Accessed 14 Apr 2014

  18. Xi, K., Kao, Y.-H., Jonathan Chao, H.: A petabit bufferless optical switch for data center networks. Springer Link Book Title: Optical Interconnects for Future Data Center Networks, pp. 135–154. Print ISBN: 978-1-4614-4629-3. 2013

  19. Neel, B., Morris, R., Ditomaso, D., Kodi, A.: SPRINT: scalable photonic switching fabric for high performance computing (HPC). IEEE J. Opt. Commun. Netw. 4(9), A38–A47 (2012). doi:10.1364/JOCN.4.000A38

  20. Ji, P.N., Qian, D., Kanonakis, K., Kachris, C., Tomkos, I.: Design and evaluation of a flexible bandwidth OFDM intra data center interconnect. IEEE J. Sel. Top. Quantum Electron. 19(2), 3700310 (2013). doi:10.1109/JSTQE.2012.2209409

    Article  Google Scholar 

  21. Kodi, A.K., Louri, A.: Energy efficient and bandwidth reconfigurable photonic networks for high performance computing systems. IEEE J. Sel. Top. Quantum Electron. 17(2), 384–395 (2011). doi:10.1109/JSTQE.2010.2051419

    Article  Google Scholar 

  22. Di Lucente, S., Centelles, R.P., Dorren, H.J.S., Calabretta, N.: Study of the performance of an optical packet switch architecture with highly distributed control in data center environment. IEEE 16th International Conference on Optical Network Design and Modeling (ONDM), pp. 1–6, (2012). doi:10.1109/ONDM.2012.6210266

  23. Ye, X., Yin, Y., Yoo, S.J.B., Mejia, P., Proietti, R., Akella, V.: DOS: a scalable optical switch for datacenters. ANCS’10, ACM/IEEE Symposium on Architectures for Networking andCommunications Systems, Article No 24 (2010). doi:10.1145/1872007.1872037

  24. Liboriron, O., Isabella, C., Pier Giorgio, R., Nicola, A., Piero, C.: Energy efficient design of a scalable optical multiplane interconnection architecture. IEEE J. Sel. Top. Quantum Electron. 17(2), 377–383 (2010). doi:10.1109/JSTQE.2010.2049733

    Article  Google Scholar 

  25. Kong, Q., Huang, S., Zhou, Y., Zhang, M., Zhao, Y., Guo, B., Zhang, J., Gu, W.: MMTDnet—A novel optical circuit switch architecture for data center networks. ACP/IP’OC (2013). doi:10.1364/ACPC.2013.AF2G.13

  26. Farrington, N., Forencich, A., Sun, P.-C., Fainman, S., Ford, J., Vahdat, A., Porter, G., Papen, G.: A ten microsecond hybrid optical/circuit electrical packet network for datacenters. OFC/NFOEC, Anaheim, California, Mar 2013

  27. Gripp, J., Simsarian, J.E., LeGrange, J.D., Bernasconi, P., Neilson, D.T.: Photonic terabit routers: the IRIS project. IEEE Conference on Optical Fiber Communication (OFC), National Fiber Optic Engineers Conference, pp. 1–3. E-ISBN: 978-1-55752-884-1. 2010

  28. Luijten, R., Denzel, W.E., Grzybowski, R.R., Hemenway, R.: Optical interconnection networks: the OSMOSIS project. 17th Annual Meeting of the IEEE Lasers and Electro-Optics Society, Vol. 2, pp. 563–564. Print ISBN: 0-7803-8557-8. 2004

  29. Bilal, K., Khan, S.U., Zhang, L., Li, H., Hayat, K., Madani, S.A., Min-Allah, N., Wang, L., Chen, D., Iqbal, M., Xu, C.-Z., Zomaya, A.Y.: Quantitative Comparisons of the State of the Art Data Center Architectures. Concurrency and Computation: Practice and Experience 25(12), 1771–1783 (2013). doi:10.1002/cpe.2963

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank COMSATS Institute of Information Technology, Abbottabad, Pakistan, for their support and funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsin Fayyaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fayyaz, M., Aziz, K. & Mujtaba, G. Blocking probability in optical interconnects in data center networks. Photon Netw Commun 30, 204–222 (2015). https://doi.org/10.1007/s11107-015-0512-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-015-0512-4

Keywords

Navigation