Skip to main content

Advertisement

Log in

Curcuma longa Mitogen-Activated Protein Kinase 6 (ClMPK6) Stimulates the Defense Response Pathway and Enhances the Resistance to Necrotrophic Fungal Infection

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Mitogen-activated protein kinase (MAPK) cascades are highly conserved signaling modules that transduce the externally perceived signals and play crucial role in plant defense against pathogen attack. In the present study, a turmeric (Curcuma longa L.) complementary DNA (cDNA) encoding a MAPK gene responsive to Pythium aphanidermatum infection was isolated using rapid amplification of cDNA ends (RACE)-PCR. It was designated as ClMPK6 based on its high homology with Arabidopsis AtMPK6. The full-length cDNA of 1484 bp length carried an open reading frame (ORF) of 1176 bp encoding a 391 amino acid polypeptide. ClMPK6 protein contains Thr-Glu-Tyr (TEY) motif on its activation loop with a common docking (CD) domain at the C-terminal end and belong to subgroup A of MAPK family. Southern hybridization revealed single copy of ClMPK6 in turmeric genome, and its intron-exon composition showed highly conserved nature of these signaling kinases across different species. Quantitative RT-PCR showed high expression of ClMPK6 in rhizome tissues of mature turmeric plants. Analysis of temporal expression revealed significant induction of ClMPK6 transcript in response to defense signaling molecules and pathogen attack at the early stages. Ectopic overexpression of ClMPK6 in Arabidopsis plants resulted in enhanced resistance to Botrytis cinerea and constitutively high expression of defense responsive genes like PDF1.2, PAD3, AOS, ACS2, ACS6, etc. Our results suggest that ClMPK6 substantiate the characteristics of AtMPK6 orthologs in defense against necrotrophic infection in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Antico CJ, Colon C, Banks T, Ramonell KM (2012) Insights into the role of jasmonic acid-mediated defenses against necrotrophic and biotrophic pathogens. Front Biol 7:48–56

    Article  CAS  Google Scholar 

  • Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977–983

    Article  CAS  PubMed  Google Scholar 

  • Bailey TL, Williams N, Misleh C, Li WW (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucl Acids Res 34:W369–W373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bari R, Jones JD (2009) Role of plant hormones in plant defense responses. Plant Mol Biol 69:473–88

    Article  CAS  PubMed  Google Scholar 

  • Bergmann D, Lukowitz W, Somerville C (2004) Stomatal development and pattern controlled by a MAPKK Kinase. Science 304:1494–1497

    Article  CAS  PubMed  Google Scholar 

  • Bethke G, Unthan T, Uhrig JF, Pöschl Y, Gust AA, Scheel D, Lee J (2009) Flg22 regulates the release of an ethylene response factor substrate from MAP kinase 6 in Arabidopsis thaliana via ethylene signaling. Proc Natl Acad Sci U S A 106:8067–8072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brader G, Djamei A, Teige M, Palva ET, Hirt H (2007) The MAP kinase kinase MKK2 affects disease resistance in Arabidopsis. Mol Plant-Microbe Interact 20:589–596

    Article  CAS  PubMed  Google Scholar 

  • Bush SM, Krysan PJ (2007) Mutational evidence that the Arabidopsis MAP kinase MPK6 is involved in anther, inflorescence, and embryo development. J Exp Bot 58:2181–91

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Colcombet J, Hirt H (2008) Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. Biochem J 413:217–226

    Article  CAS  PubMed  Google Scholar 

  • Dhamayanthi KPM, Sasikumar B, Remashree AB (2003) Reproductive biology and incompatibility studies in ginger (Zingiber officinale Rosc.). Phytomorph 53:123–131

    Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant genomic DNA from fresh tissue. Focus 12:1241–1251

    Google Scholar 

  • Galletti R, Ferrari S, De Lorenzo G (2011) Arabidopsis MPK3 and MPK6 Play different roles in basal and oligogalacturonide- or Flagellin-induced resistance against Botrytis cinerea. Plant Physiol 157:804–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gimenez-Ibanez S, Solano R (2013) Nuclear jasmonate and salicylate signaling and crosstalk in defense against pathogens. Front Plant Sci 4:72

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo H, Ecker JR (2004) The ethylene signalling pathway: new insights. Curr Opin Plant Biol 7:40–9

    Article  CAS  PubMed  Google Scholar 

  • Hamel LP, Nicole MC, Sritubtim S, Morency MJ, Ellis M, Ehlting J, Beaudoin N, Barbazuk B, Klessig D, Lee J, Martin G, Mundy J, Ohashi Y, Scheel D, Sheen J, Xing T, Zhang S, Seguin A, Ellis BE (2006) Ancient signals: comparative genomics of plant MAPK and MAPKK gene families. Trends Plant Sci 11:192–198

    Article  CAS  PubMed  Google Scholar 

  • Han L, Li GJ, Yang KY, Mao G, Wang R, Liu Y, Zhang S (2010) Mitogen-activated protein kinase 3 and 6 regulate Botrytis cinerea-induced ethylene production in Arabidopsis. Plant J 64:114–27

    CAS  PubMed  Google Scholar 

  • Hanks SK, Quinn AM, Hunter T (1988) The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241:42–52

    Article  CAS  PubMed  Google Scholar 

  • Ichimura K, Shinozaki K, Tena G, Sheen J, Henry Y, Champion A, Kreis M, Zhang S, Hirt H, Wilson C, Heberle-Bors E, Ellis BE, Morris PC, Innes RW, Ecker JR, Scheel D, Klessig DF, Machida Y, Mundy J, Ohashi Y, Walker JC (2002) Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci 7:301–308

    Article  CAS  Google Scholar 

  • Karimi M, Inzé D, Depicker A (2002) GATEWAY™ vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195

    Article  CAS  PubMed  Google Scholar 

  • Kavitha PG, Thomas G (2008) Defense transcriptome profiling of Zingiber zerumbet (L.) Smith by mRNA differential display. J Biosci 33:81e90

    Article  Google Scholar 

  • Kumar KRR, Srinivasan T, Kirti PB (2009) A mitogen-activated protein kinase gene, AhMPK3 of peanut: molecular cloning, genomic organization, and heterologous expression conferring resistance against Spodoptera litura in tobacco. Mol Genet Genom 282:65–81

    Article  CAS  Google Scholar 

  • Li G, Meng X, Wang R, Mao G, Han L, Liu Y, Zhang S (2012) Dual-level regulation of ACC synthase activity by MPK3/MPK6 cascade and its downstream WRKY transcription factor during ethylene induction in Arabidopsis. PLoS Genet 8, e1002767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu JZ, Braun E, Qiu WL, Shi YF, Marcelino-Guimaraes FC, Navarre D, Hill JH, Whitham SA (2014) Positive and negative roles for soybean MPK6 in regulating defense responses. Mol Plant-Microbe Interact 27:824–834

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C (T)) Method. Methods 25:402–8

    Article  CAS  PubMed  Google Scholar 

  • López-Bucio JS, Dubrovsky JG, Raya-González J, Ugartechea-Chirino Y, López-Bucio J, de Luna-Valdez LA, Ramos-Vega M, León P, Guevara-García AA (2013) Arabidopsis thaliana mitogen-activated protein kinase 6 is involved in seed formation and modulation of primary and lateral root development. J Exp Bot 65:169–183

    Article  PubMed  PubMed Central  Google Scholar 

  • Lorenzo O, Piqueras R, Sanchez-Serrano JJ, Solano R (2003) ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15:165–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menke FLH, van Pelt JA, Pieterse CMJ, Klessig DF (2004) Silencing of the mitogen-activated protein kinase MPK4 compromises disease resistance in Arabidopsis. Plant Cell 6:897–907

    Article  Google Scholar 

  • Mur LAJ, Kenton P, Atzorn R, Miersch O, Wasternack C (2006) The outcomes of concentration-specific interactions between salicylate and jasmonate signalling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol 140:249–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nanda S, Nayak S, Joshi RK (2014) Molecular cloning and expression analysis of four turmeric MAP kinase genes in response to abiotic stresses and phytohormones. Biol Plantarum 58:479–490

    Article  CAS  Google Scholar 

  • Ning J, Li X, Hicks LM, Xiong L (2010) A Raf-like MAPKKK gene DSM1 mediates drought resistance through reactive oxygen species scavenging in rice. Plant Physiol 152:876–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okawa C, Ishikawa A (2013) MPK6 contributes to non-host resistance to Magnaporthe oryzae in Arabidopsis thaliana. Biosci Biotechnol Biochem 77:1320–1322

    Article  CAS  PubMed  Google Scholar 

  • Pitzschke A, Schikora A, Hirt H (2009) MAPK cascade signalling networks in plant defense. Curr Opin Plant Biol 12:421–426

    Article  CAS  PubMed  Google Scholar 

  • Quan LJ, Zhang B, Shi WW, Li HY (2008) Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. J Int Plant Biol 50:2–18

    Article  CAS  Google Scholar 

  • Ravindran PN, Nirmalbabu K, Sivaraman K (2007) Turmeric: The Genus Curcuma (Medicinal and Aromatic Plants Industrial Profiles). CRC Press, Boca Raton, USA

    Google Scholar 

  • Ren D, Liu Y, Yang KY, Han L, Mao G, Glazebrook J, Zhang S (2008) A fungal responsive MAPK cascade regulates phytoalexin biosynthesis in Arabidopsis. Proc Natl Acad Sci U S A 105:5638–5643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robert SA, Navarro L, Bari R, Jones JD (2007) Pathological hormone imbalances. Curr Opin Plant Biol 10(4):372–9

    Article  Google Scholar 

  • Selvan MT, Thomas KG, Manojkumar K (2002) Ginger (Zingiber officinale Rosc) in Indian Spices Production and Utilization (Singh HP, Sivaraman K, Selvan MT, eds). Coconut Development Board, Calicut,110-131

  • Sinha AK, Jaggi M, Raghuram B, Tuteja N (2011) Mitogen-activated protein kinase signaling in plants under abiotic stress. Plant Signal Behav 6:196–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song F, Goodman RM (2002) OsBIMK1, a rice MAP kinase gene involved in disease resistance responses. Planta 215:997–1005

    Article  CAS  PubMed  Google Scholar 

  • Suarez-Rodriguez CM, Petersen M, Mundy J (2010) Mitogen-activated protein kinase signalling in plants. Ann Rev Plant Biol 61:621–649

    Article  Google Scholar 

  • Taj G, Agarwal P, Grant M, Kumar A (2010) MAPK machinery in plants recognition and response to different stresses through multiple signal transduction pathway. Plant Signal Behav 5:1370–1378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tena G, Boudsocq M, Sheen J (2011) Protein kinase signaling networks in plant innate immunity. Curr Opin Plant Biol 14:519–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voronin V, Aionesei T, Limmongkon A, Barinova I, Touraev A, Lauriere C, Coronado MJ, Testillano PS, Risueno MC, Heberle-Bors E (2004) The MAP kinase kinase NtMEK2 is involved in tobacco pollen germination. FEBS Lett 560:86–90

    Article  CAS  PubMed  Google Scholar 

  • Wally O, Punja ZK (2010) Genetic engineering for increasing fungal and bacterial disease resistance in crop plants. GM Crops 1:199–206

    Article  PubMed  Google Scholar 

  • Wang Z, Mao H, Dong C, Ji R, Cai L, Fu H, Liu S (2009) Overexpression of Brassica napus MPK4 enhances resistance to Sclerotinia sclerotiorum in oilseed rape. Mol Plant Microbe Interact 22:235–244

    Article  CAS  PubMed  Google Scholar 

  • Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Widmann C, Gibson S, Jarpe MB, Johnson GL (1999) Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 79:143–180

    CAS  PubMed  Google Scholar 

  • Xu H, Wang X, Sun X, Shi Q, Yang F, Du D (2008) Molecular cloning and characterization of a cucumber MAP kinase gene in response to excess NO3− and other abiotic stresses. Sci Hort 117:1–8

    Article  CAS  Google Scholar 

  • Yang KY, Liu Y, Zhang S (2001) Activation of a mitogen activated protein kinase pathway is involved in disease resistance in tobacco. Proc Natl Acad Sci U S A 98:741–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S (2008) Mitogen-activated protein kinase cascades in plant intracellular signaling. Ann Plant Rev 33:100–136

    Google Scholar 

  • Zhang S, Liu Y (2001) Activation of salicylic acid-induced protein kinase, a mitogen-activated protein kinase, induces multiple defense responses in tobacco. Plant Cell 13:1877–1889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang T, Liu Y, Xue L, Xu S, Chen T, Yang T, Zhang L, An L (2006) Molecular cloning and characterization of a novel MAP kinase gene in Chorispora bungeana. Plant Physiol Biochem 44:78–84

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

SN is grateful to Siksha O Anusandhan University for providing financial support under the institutional PhD fellowship programme. ER is grateful to Science and Engineering Research Board (SERB), Dept. of Science and Technology (DST), Govt. of India for financial support in form of Junior Research Fellowship. The work is funded by research grant (REGR/2289/SOAU) from Siksha O Anusandhan University, Bhubaneswar, India. The authors are thankful to DST-FIST, Govt. of India, for the facilities provided to Centre of Biotechnology, Siksha O Anusandhan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj Kumar Joshi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Agarose gel electrophoresis for the cloning of ClMPK6 from turmeric. a Isolation of 646 bp fragment from 5′ region obtained through 5′ RACE-PCR. b Isolation of 1026 bp fragment from 3′ region obtained through 3′ RACE-PCR. c Amplification of 1484 bp fragment representing the full-length cDNA of ClMPK6 gene. M, 100 bp ladder plus; + positive control with expected amplification of ≈300 bp fragment from turmeric Actin 1 gene; − denotes negative control having turmeric RNA as template. (JPG 113 kb)

Figure S2

a SOPMA analysis of deduced ClMPK6 protein: α helix, extended strand, β turn, and random coil are indicated with the blue, red, green, and pink vertical lines, respectively. b Hydropathicity analysis of ClMPK6. The vertical axis indicates the average hydropathicity and the horizontal axis indicates the individual amino acids. Higher negative values indicate hydrophobic nature of ClMPK6. (JPG 401 kb)

Figure S3

qPCR analysis of defense responsive genes in wild type (WT) and transgenic Arabidopsis line ClMPK6#4. Expression levels are shown as relative those of the control plants (0 h), which were set to 1. Standard error bars for the fold changes determined by qRT-PCR are shown. ANOVA test was used to determine the significance of difference between infected and mock samples. Asterisk indicates significant difference at a P value <0.05. (JPG 375 kb)

Figure S4

qPCR analysis of defense responsive genes in wild type (WT) and transgenic Arabidopsis line ClMPK6#31. Expression levels are shown as relative those of the control plants (0 h), which were set to 1. Standard error bars for the fold changes determined by qRT-PCR are shown. ANOVA test was used to determine the significance of difference between infected and mock samples. Asterisk indicates significant difference at a P value <0.05. (JPG 376 kb)

Table S1

(DOCX 13 kb)

Table S2

(DOCX 13 kb)

Table S3

(DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nanda, S., Rout, E. & Joshi, R.K. Curcuma longa Mitogen-Activated Protein Kinase 6 (ClMPK6) Stimulates the Defense Response Pathway and Enhances the Resistance to Necrotrophic Fungal Infection. Plant Mol Biol Rep 34, 886–898 (2016). https://doi.org/10.1007/s11105-015-0972-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-015-0972-9

Keywords

Navigation