Skip to main content
Log in

The above-belowground coupling of the C cycle: fast and slow mechanisms of C transfer for root and rhizomicrobial respiration

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

The coupling of photosynthesis with belowground processes appears to be much faster than the time needed for assimilate translocation with the phloem flow. Pressure/concentration waves have been hypothesized to release belowground C already present in the phloem, resulting in a very fast feedback of rhizosphere processes to photosynthesis changes. We evaluate the speed of aboveground-rhizosphere coupling under maize by two mechanisms: pressure/concentration waves and direct phloem transport.

Methods

We combined two isotopic approaches: 1) the speed of direct phloem transport was evaluated by labeling shoots in 14CO2 and tracing 14C in the nutrient solution and in the CO2 flux, 2) pressure/concentration waves were evaluated by labeling the solution with [13C] glucose and tracing the isotope dilution during photoassimilation.

Results

14C shoot labeling of maize plants showed that 12  h were needed for 14C to peak in root-derived CO2. In contrast, in the solution labeling approach, CO2 flux increased within 2 h after switching on the light. Pressure/concentration waves contributed 5 % to diurnal respiration efflux and affected only root respiration. Root exudation was independent of the fast mechanism of above-belowground coupling.

Conclusions

Photosynthesis affected root and rhizomicrobial respiration on variable time-scales: root respiration within the first 2 h by pressure/concentration waves, whereas rhizomicrobial respiration may depend on internal circadian cycles in regulating exudation rather than on light directly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

OC:

organic carbon

IC:

inorganic carbon

TC:

total carbon

References

  • Andersen CP (2003) Source–sink balance and carbon allocation below ground in plants exposed to ozone. New Phytol 157:213–228

    Article  CAS  Google Scholar 

  • Bahn M, Schmitt M, Siegwolf R, Richter A, Brüggemann N (2009) Does photosynthesis affect grassland soil-respired CO2 and its carbon isotope composition on a diurnal timescale? New Phytol 182:451–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bahn M, Lattanzi FS, Hasibeder R, Wild B, Koranda M, Danese V, Brüggermann N, Schmitt M, Siegworf, Richter A (2013) Responses of belowground carbon allocation dynamics to extended shading in mountain grassland. New Phytol 198:116–126

  • Baldocchi D, Tang J, Xu L (2006) How switches and lags in biophysical regulators affect spatial-temporal variation of soil respiration in an oak-grass savanna. J Geophys Ress-Biogeosci 111:G02008

    Google Scholar 

  • Barthel M, Hammerle A, Sturm P, Baur T, Gentsch L, Knohl A (2011) The diel imprint of leaf metabolism on the δ13C signal of soil respiration under control and drought conditions. New Phytol 192:925–938

    Article  CAS  PubMed  Google Scholar 

  • Biernath C, Fischer H and Kuzyakov Y 2008 Root uptake of N-containing and N-free low molecular weight organic substances by maize: A 14C/15N tracer study. Soil Biol Biochem 40, 2237–2245

  • Burri S, Sturm P, Baur T, Barthel M, Knohl A, Buchmann N (2014) The effect of physical back-diffusion of CO2 tracer on the coupling between photosynthesis and soil CO2 efflux in grassland. Isot Environ Healt S 50:497–513

    Article  CAS  Google Scholar 

  • Cheng W, Coleman DC, Carroll CR, Hoffman CA (1993) In situ measurement of root respiration and soluble C concentrations in the rhizosphere. Soil Biol Biochem 25:1189–1196

    Article  Google Scholar 

  • Dilkes NB, Jones DL, Farrar JF (2004) Temporal dynamics of carbon partitioning and rhizodeposition in wheat. Plant Physiol 134:706–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ekblad A, Bjӧrn B, Holm A, Comstedt D (2005) Forest soil respiration rate and δ13C is regulated by recent above ground weather conditions. Oecologia 143:136–142

    Article  PubMed  Google Scholar 

  • Epron D, Bahn M, Derrien D, Lattanzi FA, Pumpanen J, Gessler A, Hogberg P, Maillard P, Dannoura M, Gerant D, Buchmann N (2012) Pulse-labelling trees to study C allocation dynamics: a review of methods, current knowledge and future perspectives. Tree Physiol 32:776–798

    Article  CAS  PubMed  Google Scholar 

  • Farrar JF, Jones DL (2000) The control of carbon acquisition by roots. New Phytol 147:43–53

    Article  CAS  Google Scholar 

  • Ferrier JM, Tyree MT, Christy AL (1975) The theoretical time-dependent behavior of a Münch pressure-flow system: the effect of sinusoidal time variation in sucrose loading and water potential. Can J Bot 53:1120–1127

    Article  Google Scholar 

  • Fisher D B 2000 Long-distance transport. In Biochemistry and Molecular Biology of Plants. Ed. Buchanan B. pp. 730–784.

  • Gavrichkova O, Kuzyakov Y (2012) Direct phloem transport and pressure concentration waves in linking shoot and rhizosphere activity. Plant Soil 351:23–30

    Article  CAS  Google Scholar 

  • Gavrichkova O, Proietti S, Moscatello S, Portarena S, Battistelli A, Matteucci G, Brugnoli E (2011) Short-term natural δ13C and δ18O variations in pools and fluxes in a beech forest: the transfer of isotopic signal from recent photosynthates to soil respired CO2. Biogeosci 8:2833–2846

    Article  CAS  Google Scholar 

  • Gessler A, Kreuzwieser J, Dopatka T, Rennenberg H (2002) Diurnal courses of ammonium net uptake by the roots of adult beech (Fagus sylvatica) and spruce (Picea abies) trees. Plant Soil 240:23–32

    Article  CAS  Google Scholar 

  • Gessler A, Keitel C, Kodama N, Weston C, Winters AJ, Keith H, Grice K, Leuning R, Farquhar GD (2007) δ13C of organic matter transported from the leaves to the roots In Eucalyptus delegatensis: short-term variations and relation to respired CO2. Funct Plant Biol 34:692–706

    Article  CAS  Google Scholar 

  • Göttlicher A, Knohl A, Wanek W, Buchmann N and Richter A (2006) Short-term changes in carbon isotope composition of soluble carbohydrates and starch: from canopy leaves to the soil system. Rapid Commun Mass Spectrom 20:653–660

  • Hölttä T, Vesala T, Sevanto S, Perämäki M, Nikinmaa E (2006) Modeling xylem and phloem water flows in trees according to cohesion theory and Münch hypothesis. Trees-Struct Funct 20:67–78

    Article  Google Scholar 

  • Hölttä T, Mencuccini M, Nikinmaa E (2009) Linking phloem function to structure: analysis with a coupled xylem–phloem transport model. J Theor Biol 259:325–337

    Article  PubMed  Google Scholar 

  • Janssens IA, Lankreijer H, Matteucci G, Kowalski AS, Buchmann N, Epron D, Pilegaard K, Kutsch W, Longdoz B, et al. (2001) Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Glob Chang Biol 7:269–278

    Article  Google Scholar 

  • Jones DL, Darrah PR (1992) Resorption of organic-components by roots of Zea mays L. and its consequences in the rhizosphere. 1. Resorption of 14C labelled glucose, mannose and citric-acid. Plant Soil 143:259–266

    Article  CAS  Google Scholar 

  • Jones DL, Darrah PR (1993) Re-sorption of organic components by roots of Zea mays L. And its consequences in the rhizosphere. Plant Soil 153:47–59

    Article  CAS  Google Scholar 

  • Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480

    Article  CAS  Google Scholar 

  • Jones DL, Clode PL, Kilburn MR, Stockdale EA, Murphy DV (2013) Competition between plant and bacterial cells at the microscale regulates the dynamics of nitrogen acquisition in wheat (Triticum aestivum). New Phytol 200:796–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kayler Z, Gessler A, Buchmann N (2010) What is the speed of link between aboveground and belowground processes? New Phytol 187:885–888

    Article  PubMed  Google Scholar 

  • Keel SG, Campbell CD, Högberg MN, Richter A, Wild B, Zhou X, Hurry V, Linder S, Näsholm T, Högberg P (2012) Allocation of carbon to fine root compounds and their residence times in a boreal forest depend on root size class and season. New Phytol 194:972–981

    Article  PubMed  Google Scholar 

  • Kuzyakov Y, Cheng W (2001) Photosynthesis controls of rhizosphere respiration and organic matter decomposition. Soil Biol Biochem 14:1915–1925

    Article  Google Scholar 

  • Kuzyakov Y, Cheng W (2004) Photosynthesis controls of CO2 efflux from maize rhizosphere. Plant Soil 263:85–99

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Domanski G (2002) Model of rhizodeposition and CO2 efflux from planted soil and its validation by 14C pulse labeling of ryegrass. Plant Soil 219:87–102

    Article  Google Scholar 

  • Kuzyakov Y, Gavrichkova O (2010) Time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls. Glob Chang Biol 16:3386–3406

    Article  Google Scholar 

  • Kuzyakov Y, Kretzschmar A, Stahr K (1999) Contribution of Lolium perenne rhizodeposition to carbon turnover of pasture soil. Plant Soil 213:127–136

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Leinweber P, Sapronov D, Eckhardt KU (2003) Qualitative assessment of rhizodeposits in non sterile soil by analytical pyrolysis. J Plant Nutr Soil Sc 166:719–723

    Article  CAS  Google Scholar 

  • Liu Q, Edwards NT, Post WM, Gu L, Ledford J, Lenhart S (2006) Temperature independent diel variation in soil respiration observed from a temperate deciduous forest. Glob Chang Biol 12:2136–2145

    Article  Google Scholar 

  • Macek T, Macková M, Káš J (2000) Exploitation of plants for the removal of organics in environmental remediation. Biotechnol Adv 18:23–34

    Article  CAS  PubMed  Google Scholar 

  • Makita N, Kosugi Y, Kamakura M (2014) Linkages between diurnal patterns of root respiration and leaf photosynthesis in Quercus crispula and Fagus crenataseedlings. J Agr Meteorol 70:151–162

    Article  Google Scholar 

  • Mencuccini M, Hölttä T (2010a) The significance of phloem transport for the speed with which canopy photosynthesis and belowground respiration are linked. New Phytol 185:189–203

    Article  CAS  PubMed  Google Scholar 

  • Mencuccini M, Hölttä T (2010b) On light bulbs and marbles. Transfer times and teleconnections in plant fluid transport systems. New Phytol 187:888–891

    Article  Google Scholar 

  • Minchin PEH, Lacointe A (2005) New understanding on phloem physiology and possible consequences for modelling long-distance transport. New Phytol 166:771–779

    Article  CAS  PubMed  Google Scholar 

  • Münch E (1930) Die Stoffbewegungen in der Pflanze. Gustav Fischer Jena:1–234

  • Näsholm T, Ekblad A, Nordin A, Giesler R, Högberg M, Högberg P (1998) Boreal forest plants take up organic nitrogen. Nature 392:914–916

    Article  Google Scholar 

  • Neumann G and Rӧmheld V 2007 The reliese of root exudates as affected by the plant physiological status. In The Rhizosphere-Biosphere and Organic Substances at the Soil Plant Interface. Ed Pnton R, Varanini Z, Nannipieri P. Boca Raton, FL. Pp. 24–72. CRC Press, Taylor and Francis Group.

    Google Scholar 

  • Oburger E, Dell’mour M, Hann S, Wieshammer G, Puschenreiter M and Wenzel W W 2013 Evaluation of a novel tool for sampling root exudates from soil-grown plants compared to conventional techniques. Environ Exp Bot 87, 235–247

  • Oburger E, Gruber B, Schindlegger Y, Schenkeveld WDC, Hann S, Kraemer SM, Wenzel WW, Puschenreiter M (2014) Root exudation of phytosiderophores from soil-grown wheat. New Phytol 203:1161–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perämäki M, Nikinmaa E, Sevanto S, Ilvesniemi H, Siivola E, Hari P, Vesala T (2001) Tree stem diameter variations and transpiration in Scots pine: an analysis using a dynamic sap flow model. Tree Physiol 21:889–897

    Article  PubMed  Google Scholar 

  • Sanaullah M, Chabbi A, Rumpel C, Kuzyakov Y (2012) Carbon allocation in grassland communities under drought stress followed by 14C pulse labeling. Soil Biol Biochem 55:132–139

    Article  CAS  Google Scholar 

  • Shibistova O, Yohannes Y, Boy J, Richter A, Wild B, Watzka M, Guggenberger G (2012) Rate of belowground carbon allocation differs with successional habit of two afromontane trees. PLoS One 7:e45540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subke J-A, Vallack HW, Magnusson T, Keel SG, Metcalfe DB, Högberg P, Ineson P (2009) Short-term dynamics of abiotic and biotic soil 13CO2 effluxes after in situ 13CO2 pulse labelling of a boreal pine forest. New Phytol 183:349–357

    Article  CAS  PubMed  Google Scholar 

  • Tang J, Baldocchi DD, Xu L (2005) Tree photosynthesis modulates soil respiration on a diurnal time scale. Glob Chang Biol 11:1298–1304

    Article  Google Scholar 

  • Thomson MV (2006) Phloem: the long and the short of it. Trends Plant Sci 11:26–32

  • Thomson MV, Holbrook NM (2003) Scaling phloem transport: water potential equilibrium and osmoregulatory flow. Plant Cell Environ 26:1561–1577

    Article  Google Scholar 

  • Thomson MV, Holbrook NM (2004) Scaling phloem transport: information transmission. Plant Cell Environ 27:509–519

    Article  Google Scholar 

  • Werth M, Kuzyakov Y (2006) Assimilate partitioning affects 13C fractionation of recently assimilated carbon in maize. Plant Soil 284:319–333

    Article  CAS  Google Scholar 

  • Wingate L, Ogée J, Burlett R, Bosc A, Devaux M, Grace J, Loustau D, Gessler A (2010) Photosynthetic carbon isotope discrimination and its relationship to the carbon isotope signals of stem, soil and ecosystem respiration. New Phytol 188:576–589

    Article  CAS  PubMed  Google Scholar 

  • Zibilske LM (1994) Carbon mineralization. In: Weaver RW, Angle JS, Bottomley PS (Eds) Methods of soil analysis, part 2. Microbiological and biochemical properties. Soil Sci Soc Am J, Madison, WI, p 835–864

Download references

Acknowledgments

The authors thank Dr. Anton Ermak for his support in samples preparation and analysis. The present work is part of “CARBOSOIL” project funded by Autonomous Province of Trento (Italy) under “Marie Curie Action - COFUND PostDoc 2010 Incoming” program. The stay of Dr. Olga Gavrichkova in University of Gӧttingen was financed by Short Term Scientific Mission Grant released by SIBAE COST Action ES0806. The authors thank the German Research Foundation (DFG) for financial support with the project “Carbon input and turnover in subsoil biopores” (KU 1184/29-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Gavrichkova.

Additional information

Responsible Editor: Eric Paterson.

Electronic Supplementary Material

ESM 1

(DOCX 81 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavrichkova, O., Kuzyakov, Y. The above-belowground coupling of the C cycle: fast and slow mechanisms of C transfer for root and rhizomicrobial respiration. Plant Soil 410, 73–85 (2017). https://doi.org/10.1007/s11104-016-2982-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-016-2982-2

Key words

Navigation