Skip to main content

Advertisement

Log in

Combining δ13C measurements and ERT imaging: improving our understanding of competition at the crop-soil-hedge interface

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Hedgerow cropping decreases erosion in hillside agriculture but also competes for water and nutrients with crops. This study combined two methods for an improved understanding of water and nutrient competition at the crop-soil-hedge interface.

Methods

δ13C isotopic discrimination in plants and soil electrical resistivity tomography (ERT) imaging were used in a field trial with maize monocropping (MM) vs. leucaena hedgerow intercropping with and without fertilizer (MHF+ and MHF) in Thailand.

Results

Hedges significantly reduced maize grain yield and aboveground biomass in rows close to hedgerows. ERT revealed water depletion was stronger in MM than in MHF+ and MHF- confirming time domain reflectometry and leaf area data. In MHF+, water depletion was higher in maize rows close to the hedge compared to rows distant to hedges and maize grain δ13C was significantly less negative in rows close to hedges (-10.33‰) compared to distant ones (-10.64‰). Lack of N increased grain δ13C in MHF- (-9.32‰, p ≤ 0.001). Both methods were correlated with each other (r = 0.66, p ≤ 0.001). Combining ERT with grain δ13C and %N allowed identifying that maize growth close to hedges was limited by N and not by water supply.

Conclusion

Combining ERT imaging and 13C isotopic discrimination approaches improved the understanding of spatial-temporal patterns of competition at the hedge-soil-crop interface and allowed distinguishing between water and N competition in maize based hedgerow systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Akondé TP, Leihner DE, Steinmüller N (1997) Alley cropping on an Ultisol in subhumid Benin part 3: nutrient budget of maize, cassava and trees. Agrofor Syst 37:213–226. doi:10.1023/a:1005863818511

    Article  Google Scholar 

  • Amato M, Bitella G, Rossi R, Gómez JA, Lovelli S, Gomes JJF (2009) Multi-electrode 3D resistivity imaging of alfalfa root zone. Eur J Agron 31:213–222. doi:10.1016/j.eja.2009.08.005

    Article  Google Scholar 

  • Barbottin A, Lecomte C, Bouchard C, Jeuffroy M-H (2005) Nitrogen remobilization during grain filling in wheat. Crop Sci 45:1141–1150. doi:10.2135/cropsci2003.0361

    Article  Google Scholar 

  • Bayala J, Teklehaimanot Z, Ouedraogo SJ (2004) Fine root distribution of pruned trees and associated crops in a parkland system in Burkina Faso. Agrofor Syst 60:13–26. doi:10.1023/b:agfo.0000009401.96309.12

    Article  Google Scholar 

  • Bazié HR, Bayala J, Zombré G, Sanou J, Ilstedt U (2012) Separating competition-related factors limiting crop performance in an agroforestry parkland system in Burkina Faso. Agrofor Syst 84:377–388. doi:10.1007/s10457-012-9483-y

    Article  Google Scholar 

  • Besson A, Cousin I, Dorigny A, Dabas M, King D (2008) The temperature correction for the electrical resistivity measurements in undisturbed soil samples: analysis of the existing conversion models and proposal of a New model. Soil Sci 173:707–7207. doi:10.1097/SS.1090b1013e318189397f

    Article  CAS  Google Scholar 

  • Buchmann N, Brooks JR, Rapp KD, Ehleringer JR (1996) Carbon isotope composition of C4 grasses is influenced by light and water supply. Plant Cell Environ 19:392–402

    Article  CAS  Google Scholar 

  • Campbell RB, Bower CA, Richards LA (1949) Change of electrical conductivity with temperature and the relation of osmotic pressure to electrical conductivity and Ion concentration for soil Extracts1. Soil Sci Soc Am J 13:66–69. doi:10.2136/sssaj1949.036159950013000C0010x

    Article  CAS  Google Scholar 

  • Celano G, Palese AM, Ciucci A, Martorella E, Vignozzi N, Xiloyannis C (2011) Evaluation of soil water content in tilled and cover-cropped olive orchards by the geoelectrical technique. Geoderma 163:163–170. doi:10.1016/j.geoderma.2011.03.012

    Article  Google Scholar 

  • Clay DE, Clay SA, Liu Z, Reese C (2001) Spatial variability of 13C isotopic discrimination in corn. Commun Soil Sci Plant Anal 32:1813–1827. doi:10.1081/CSS-120000252

    Article  CAS  Google Scholar 

  • Clay DE, Clay SA, Lyon DJ, Blumenthal JM (2005) 13C discrimination in corn grain can be used to separate and quantify yield losses due to water and nitrogen stresses. Weed Sci 53:23–29. doi:10.1614/WS-04-070R1

    Article  CAS  Google Scholar 

  • Dercon G, Clymans E, Diels J, Merckx R, Deckers J (2006a) Differential 13C isotopic discrimination in maize at varying water stress and at Low to high nitrogen availability. Plant Soil 282:313–326. doi:10.1007/s11104-006-0001-8

    Article  CAS  Google Scholar 

  • Dercon G, Deckers J, Poesen J, Govers G, Sánchez H, Ramírez M, Vanegas R, Tacuri E, Loaiza G (2006b) Spatial variability in crop response under contour hedgerow systems in the Andes region of Ecuador. Soil Till Res 86:15–26. doi:10.1016/j.still.2005.01.017

    Article  Google Scholar 

  • Everson TM, Everson C, Van Niekirk W (2004) Agroforestry in rural farming systems: a case study from the Drakensberg mountains in KwaZulu-Natal. In: Lawes MJ, Eeley HAC, Shackelton CM, Geach BGS (eds) Indigenous forests and woodlands in South Africa : policy, people and practice. University of KwaZulu-Natal Press, Scottsville, pp 650–658

    Google Scholar 

  • Farquhar G (1983) On the nature of carbon isotope discrimination in C4 species. Funct Plant Biol 10:205–226. doi:10.1071/PP9830205

    CAS  Google Scholar 

  • Garré S, Javaux M, Vanderborght J, Pagès L, Vereecken H (2011) Three-dimensional electrical resistivity tomography to monitor root zone water dynamics. Gsvadzone 10:412–424. doi:10.2136/vzj2010.0079

    Google Scholar 

  • Garré S, Günther T, Diels J, Vanderborght J (2012) Evaluating Experimental Design of ERT for Soil Moisture Monitoring in Contour Hedgerow Intercropping Systems. gsvadzone 11: −. doi: 10.2136/vzj2011.0186.

  • Garré S, Coteur I, Wongleecharoen C, Kongkaew T, Diels J, Vanderborght J (2013) Noninvasive Monitoring of Soil Water Dynamics in Mixed Cropping Systems: A Case Study in Ratchaburi Province, Thailand. gsvadzone 12: −. doi: 10.2136/vzj2012.0129.

  • Ghannoum O (2009) C4 photosynthesis and water stress. Annals Bot 103:635–644. doi:10.1093/aob/mcn093

    Article  CAS  Google Scholar 

  • Giller KE, Corbeels M, Nyamangara J, Triomphe B, Affholder F, Scopel E, Tittonell P (2011) A research agenda to explore the role of conservation agriculture in African smallholder farming systems. Field Crop Res 124:468–472. doi:10.1016/j.fcr.2011.04.010

    Article  Google Scholar 

  • Gross N, Liancourt P, Choler P, Suding KN, Lavorel S (2010) Strain and vegetation effects on local limiting resources explain the outcomes of biotic interactions. Perspect Plant Ecol, Evol Systemat 12:9–19. doi:10.1016/j.ppees.2009.09.001

    Article  Google Scholar 

  • Guo ZL, Cai CF, Li ZX, Wang TW, Zheng MJ (2009) Crop residue effect on crop performance, soil N2O and CO2 emissions in alley cropping systems in subtropical China. Agrofor Syst 76:67–80. doi:10.1007/s10457-008-9170-1

    Article  Google Scholar 

  • Hauser S, Kang BT (1993) Nutrient dynamics, maize yield and soil organic matter dynamics in alley cropping with Leucaena leucocephala. In: Mulongoy K, Merckx R (eds) Soil organic matter dynamics and sustainability of tropical agriculture. Wiley, Chichester, pp 215–222

    Google Scholar 

  • Henderson S, Caemmerer S, Farquhar G (1992) Short-term measurements of carbon isotope discrimination in several C4 species. Funct Plant Biol 19:263–285. doi:10.1071/PP9920263

    CAS  Google Scholar 

  • Hilger T, Keil A, Lippe M, Panomtaranichagul M, Saint-Macary C, Zeller M, Pansak W, Dinh T, Cadisch G (2013) Soil Conservation on Sloping Land: Technical Options and Adoption Constraints. In: HL Fröhlich, P Schreinemachers, K Stahr, G Clemens (eds) Sustainable Land Use and Rural Development in Southeast Asia: Innovations and Policies for Mountainous Areas. Springer Berlin Heidelberg

  • Kang BT, Wilson GF, Sipkens L (1981) Alley cropping maize (Zea mays L.) and leucaena (Leucaena leucocephala Lam) in southern Nigeria. Plant Soil 63:165–179. doi:10.1007/BF02374595

    Article  Google Scholar 

  • Land Development Department (2011) Tha Yang series: Ty. Ministry of Agriculture and Cooperatives, Bangkok, Thailand, pp. 3

  • Leihner DE, Ernst-Schaeben R, Akondé TP, Steinmüller N (1996) Alley cropping on an Ultisol in subhumid Benin. Part 2: changes in crop physiology and tree crop competition. Agrofor Syst 34:13–25. doi:10.1007/BF00129629

    Article  Google Scholar 

  • Lemaire G, Gastal F (2009) Chapter 8 - quantifying crop responses to nitrogen deficiency and avenues to improve nitrogen Use efficiency. In: Sadras V, Calderini D (eds) Crop physiology. Academic, San Diego

    Google Scholar 

  • Lhuillier-Soundélé A, Munier-Jolain NG, Ney B (1999) Dependence of seed nitrogen concentration on plant nitrogen availability during the seed filling in pea. Eur J Agron 11:157–166. doi:10.1016/S1161-0301(99)00026-X

    Article  Google Scholar 

  • Lose SJ, Hilger TH, Leihner DE, Kroschel J (2003) Cassava, maize and tree root development as affected by various agroforestry and cropping systems in Bénin West Africa. Agric Ecosyst Environ 100:137–151. doi:10.1016/S0167-8809(03)00182-8

    Article  Google Scholar 

  • McCullough DE, Mihajlovic M, Aguilera A, Tollenaar M, Girardin P (1994) Influence of N supply on development and dry matter accumulation of an old and a new maize hybrid. Can J Plant Sci 74:471–477. doi:10.4141/cjps94-087

    Article  Google Scholar 

  • Meinzer FC, Zhu J (1998) Nitrogen stress reduces the efficiency of the C4 CO2 concentrating system, and therefore quantum yield, in Saccharum (sugarcane) species. J Exp Bot 49:1227–1234. doi:10.1093/jxb/49.324.1227

  • Michot D, Benderitter Y, Dorigny A, Nicoullaud B, King D, Tabbagh A (2003) Spatial and temporal monitoring of soil water content with an irrigated corn crop cover using surface electrical resistivity tomography. Water Resour Res 39:1138. doi:10.1029/2002WR001581

    Google Scholar 

  • Muchow RC (1988) Effect of nitrogen supply on the comparative productivity of maize and sorghum in a semi-arid tropical environment I. Leaf growth and leaf nitrogen. Field Crops Res 18:1–16. doi:10.1016/0378-4290(88)90055-X

    Article  Google Scholar 

  • Mugendi DN, Nair PKR, Mugwe JN, O’Neill MK, Woomer P (1999) Alley cropping of maize with calliandra and leucaena in the subhumid highlands of Kenya: part 2. Soil-fertility changes and maize yield. Agrofor Syst 46:39–50. doi:10.1023/A:1006288301044

    Article  Google Scholar 

  • Ong CK, Wilson J, Deans JD, Mulayta J, Raussen T, Wajja-Musukwe N (2002) Tree–crop interactions: manipulation of water use and root function. Agric Water Manag 53:171–186. doi:10.1016/S0378-3774(01)00163-9

    Article  Google Scholar 

  • Pansak W, Dercon G, Hilger T, Kongkaew T, Cadisch G (2007) 13C isotopic discrimination: a starting point for new insights in competition for nitrogen and water under contour hedgerow systems in tropical mountainous regions. Plant Soil 298:175–189. doi:10.1007/s11104-007-9353-y

    Article  CAS  Google Scholar 

  • Pansak W, Hilger TH, Dercon G, Kongkaew T, Cadisch G (2008) Changes in the relationship between soil erosion and N loss pathways after establishing soil conservation systems in uplands of Northeast Thailand. Agric Ecosyst Environ 128:167–176. doi:10.1016/j.agee.2008.06.002

    Article  CAS  Google Scholar 

  • Quinkenstein A, Wöllecke J, Böhm C, Grünewald H, Freese D, Schneider BU, Hüttl RF (2009) Ecological benefits of the alley cropping agroforestry system in sensitive regions of Europe. Environ Sci Pollut 12:1112–1121. doi:10.1016/j.envsci.2009.08.008

    Article  Google Scholar 

  • Rowe EC, Hairiah K, Giller KE, Noordwijk M, Cadisch G (1999) Testing the safety-net role of hedgerow tree roots by 15N placement at different soil depths. In: D Auclair, C Dupraz (eds) Agroforestry for Sustainable Land-Use Fundamental Research and Modelling with Emphasis on Temperate and Mediterranean Applications. Springer Netherlands

  • Samouëlian A, Cousin I, Tabbagh A, Bruand A, Richard G (2005) Electrical resistivity survey in soil science: a review. Soil Till Res 83: 173–193. doi: http://dx.doi.org/10.1016/j.still.2004.10.004.

  • Schiltz S, Munier-Jolain N, Jeudy C, Burstin J, Salon C (2005) Dynamics of exogenous nitrogen partitioning and nitrogen remobilization from vegetative organs in Pea revealed by 15 N in vivo labeling throughout seed filling. Plant Physiol 137:1463–1473. doi:10.1104/pp. 104.056713

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Topp GC, Davis JL, Annan AP (1980) Electromagnetic determination of soil water content: measurements in coaxial transmission lines. Water Resour Res 16:574–582. doi:10.1029/WR016i003p00574

    Article  Google Scholar 

  • van Noordwijk M, Lusiana B (1999) WaNulCAS, a model of water, nutrient and light capture in agroforestry systems. Agrofor Syst 43:217–242

  • Vanderborght J, Huisman JA, van der Kruk J, Vereecken H (2012) Geophysical methods for field-scale monitoring of flow and transport in the root zone. Non-invasive methods for soil-plant investigations. SSSA, Madison

    Google Scholar 

  • Wang Z, Kang S, Jensen CR, Liu F (2012) Alternate partial root-zone irrigation reduces bundle-sheath cell leakage to CO2 and enhances photosynthetic capacity in maize leaves. J Exp Bot 63:1145–1153. doi:10.1093/jxb/err331

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Waxman MH, Smits LJM (1968) Electrical conductivities in oil-bearing shaly sands. Soci Petrol Engin J 8:107–122

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank KU Leuven for funding the field research under project OT/07/045, the University of Agriculture, Faisalabad for supporting first author stay in Germany, the German Academic Exchange Service (DAAD) for funding the second author stay in Germany and the Forschungszentrum Jülich GmbH for providing the equipment. Finally, we would like to thank our colleagues, Sireetorn Siriwong and Channarong, at Kasetsart University, Bangkok for their continuous support during the field experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Hilger.

Additional information

Responsible Editor: Elizabeth M Baggs.

Thanuchai Kongkaew passed away on February 16th, 2012

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, K., Wongleecharoen, C., Hilger, T. et al. Combining δ13C measurements and ERT imaging: improving our understanding of competition at the crop-soil-hedge interface. Plant Soil 393, 1–20 (2015). https://doi.org/10.1007/s11104-015-2455-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-015-2455-z

Keywords

Navigation