Skip to main content

Advertisement

Log in

Contrasting responses in leaf nutrient-use strategies of two dominant grass species along a 30-yr temperate steppe grazing exclusion chronosequence

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Grazing exclusion practices can be promising restoration techniques where ecosystem degradation follows from rapidly increasing grazing pressure, as widely observed in northern Chinese grasslands. However, the mechanisms of plant-soil interactions responsible for nutrient cycling restoration remain unclear.

Methods

We examined the functional response of the two most dominant grass species with contrasting nutrient economies to a grazing exclusion chronosequence varying greatly in soil moisture and extractable N and P.

Results

The relative biomass of the nutrient acquisitive species Leymus chinensis increased while that of the nutrient conservative Stipa grandis decreased across the chronosequence. Leymus chinensis displayed increasing leaf nutrient concentration and decreasing nutrient resorption with time since grazing exclusion for both N and P. In contrast, S. grandis showed decreasing leaf N and P concentrations and largely stable nutrient resorption.

Conclusions

These differences in plasticity, with respect to nutrient stoichiometry and resorption, suggest contrasting abilities of these two dominant species to compete for soil resources and/or differences in their affinity to the changing forms of soil available N and P likely occurring along the restoration gradient. Ecosystem trajectory of change after grazing exclusion appears therefore largely dependent on the nutrient use strategies of co-occurring dominant grassland species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aerts R (1996) Nutrient resorption from senescing leaves of perennials: are there general patterns? J Ecol 84:597–608

    Article  Google Scholar 

  • Aerts R, Chapin FS (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–67

    Article  CAS  Google Scholar 

  • Aerts R, Cornelissen JHC, van Logtestijn RSP, Callaghan TV (2007) Climate change has only a minor impact on nutrient resorption parameters in a high-latitude peatland. Oecologia 151:132–139

    Article  CAS  PubMed  Google Scholar 

  • Albert CH, Thuiller W, Yoccoz NG, Soudant A, Boucher F, Saccone P, Lavorel S (2010) Intraspecific functional variability: extent, structure and sources of variation. J Ecol 98:604–613

    Article  Google Scholar 

  • Baer SG, Kitchen DJ, Blair JM, Rice CW (2002) Changes in ecosystem structure and function along a chronosequence of restored grasslands. Ecol Appl 12:1688–1701

    Article  Google Scholar 

  • Bai YF, Wu JG, Clark CM, Naeem S, Pan QM, Huang JH, Zhang LX, Han XG (2010) Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from inner Mongolia Grassland. Glob Chang Biol 16:358–372

    Article  Google Scholar 

  • Blois JL, Williams JW, Fitzpatrick MC, Jackson ST, Ferrier S (2013) Space can substitute for time in predicting climate-change effects on biodiversity. Proc Natl Acad Sci U S A 110:9374–9379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bremner JM (1996) Nitrogen: total. In: Sparks DL, Page AL, Helmke PA (eds) Methods of soil analysis part 3: chemical methods. Soil Science Society of America and American Society of Agronomy, Madison, pp 1085–1123

  • Brye KR, Riley TL (2009) Soil and plant property differences across a chronosequence of humid-temperate tallgrass prairie restorations. Soil Sci 174:346–357

    Article  CAS  Google Scholar 

  • Chapin FS III (1980) The mineral nutrition of wild plants. Annu Rev Ecol Syst 11:233–260

    Article  CAS  Google Scholar 

  • Chen JS, Chiu CY (2003) Characterization of soil organic matter in different particle-size fractions in humid subalpine soils by CP/MAS 13C NMR. Geoderma 117:129–141

    Article  CAS  Google Scholar 

  • Chen SP, Bai YF, Zhang HX, Han XG (2005) Comparing physiological responses of two dominant grass species to nitrogen addition in Xilin River Basin of China. Environ Exp Bot 53:65–75

    Article  Google Scholar 

  • Cornwell WK, Ackerly DD (2009) Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol Monogr 79:109–126

    Article  Google Scholar 

  • Cross AF, Schlesinger WH (1995) A literature review and evaluation of the Hedley fractionation: applications to the biogeochemical cycle of soil phosphorus in natural ecosystems. Geoderma 64:197–214

    Article  CAS  Google Scholar 

  • Elser JJ, Dowling T, Dobberfuhl DA, O’Brien J (2000) The evolution of ecosystem processes: ecological stoichiometry of a key herbivore in temperate and arctic habitats. J Evol Biol 13:845–853

    Article  Google Scholar 

  • Freschet GT, Cornelissen JHC, van Logtestijn RSP, Aerts R (2010b) Substantial nutrient resorption from leaves, stems and roots in a sub-arctic flora: what is the link with other resource economics traits? New Phytol 186:879–889

    Article  CAS  PubMed  Google Scholar 

  • Freschet GT, Cornwell WK, Wardle DA, Elumeeva TG, Liu W, Jackson BG, Onipchenko VG, Soudzilovskaia NA, Tao J, Cornelissen JHC (2013) Linking litter decomposition of above and belowground organs to plant-soil feedbacks worldwide. J Ecol 101:943–952

    Article  CAS  Google Scholar 

  • Gao YZ, Giese M, Han XG, Wang DL, Zhou ZY, Brueck H, Lin S, Taube F (2009) Land use and drought interactively affect interspecific competition and species diversity at the local scale. Ecol Res 24:627–635

    Article  Google Scholar 

  • He NP, Yu Q, Wu L, Wang YS, Han XG (2008) Carbon and nitrogen store and storage potential as affected by land-use in a Leymus chinensis grassland of northern China. Soil Biol Biochem 40:2952–2959

    Article  CAS  Google Scholar 

  • He NP, Wu L, Wang YS, Han XG (2009) Changes in carbon and nitrogen in soil particle-size fractions along a grassland restoration chronosequence in northern China. Geoderma 150:302–308

    Article  CAS  Google Scholar 

  • He NP, Han XG, Yu GR, Chen QS (2011) Divergent changes in plant community composition under 3-decade grazing exclusion in continental steppe. PLoS ONE 6:e26506

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hobbie SE (1992) Effects of plant species on nutrient cycling. Trends Ecol Evol 7:336–339

    Article  CAS  PubMed  Google Scholar 

  • Jiang GM, Han XG, Wu JG (2006) Restoration and management of the Inner Mongolia Grassland require a sustainable strategy. Ambio 35:269–270

    Article  PubMed  Google Scholar 

  • Kichenin E, Wardle DA, Peltzer DA, Morse CW, Freschet GT (2013) Contrasting effects of plant inter- and intra-specific variation on community-level trait measures along an environmental gradient. Funct Ecol 27:1254–1261

    Article  Google Scholar 

  • Killingbeck KT (1996) Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology 77:1716–1727

    Article  Google Scholar 

  • Knops JMH, Tilman D (2000) Dynamics of soil nitrogen and carbon accumulation for 61 years after agricultural abandonment. Ecology 81:88–98

    Article  Google Scholar 

  • Kobe RK, Lepczyk CA, Iyer M (2005) Resorption efficiency decreases with increasing green leaf nutrients in a global data set. Ecology 86:2780–2792

    Article  Google Scholar 

  • Koerselman W, Meuleman AFM (1996) The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. J Appl Ecol 33:1441–1450

    Article  Google Scholar 

  • Kumordzi BB, Wardle DA, Freschet GT (2014) Plant assemblages do not respond homogenously to local variation in environmental conditions: functional responses differ with species identity and abundance. J Veg Sci in press.

  • Kuo S (1996) Phosphorus. In: Sparks DL, Page AL, Helmke PA (eds) Methods of soil analysis part 3: chemical methods. Soil Science Society of America and American Society of Agronomy, Madison, pp 869–920

  • Lawrence D (2003) The response of tropical tree seedlings to nutrient supply: meta-analysis for understanding a changing tropical landscape. J Trop Ecol 19:239–250

    Article  Google Scholar 

  • Li YH, Wang W, Liu ZL, Jiang S (2008) Grazing gradient versus restoration succession of Leymus chinensis (Trin.) Tzvel. Grassland in Inner Mongolia. Restor Ecol 16:572–583

    Article  Google Scholar 

  • Li WJ, Li JH, Knops JMH, Wang G, Jia JJ, Qin YY (2009) Plant communities, soil carbon, and soil nitrogen properties in a successional gradient of sub-alpine meadows on the eastern Tibetan plateau of China. Environ Manag 44:755–765

    Article  Google Scholar 

  • Li YQ, Zhao HL, Zhao XY, Zhang TH, Li YL, Cui JY (2011) Effects of grazing and livestock exclusion on soil physical and chemical properties in desertified sandy grassland, Inner Mongolia, northern China. Environ Earth Sci 63:771–783

    Article  CAS  Google Scholar 

  • Lü XT, Han XG (2010) Nutrient resorption responses to water and nitrogen amendment in semi-arid grassland of Inner Mongolia, China. Plant Soil 327:481–491

    Article  Google Scholar 

  • Lü XT, Freschet GT, Flynn DFB, Han XG (2012a) Plasticity in leaf and stem nutrient resorption proficiency potentially reinforces plant–soil feedbacks and microscale heterogeneity in a semi-arid grassland. J Ecol 100:144–150

    Article  Google Scholar 

  • Lü XT, Kong DL, Pan QM, Simmons ME, Han XG (2012b) Nitrogen and water availability interact to affect leaf stoichiometry in a semi-arid grassland. Oecologia 168:301–310

    Article  PubMed  Google Scholar 

  • Lü XT, Reed S, Yu Q, He NP, Wang ZW, Han XG (2013) Covergent responses of nitrogen and phosphorus resorption to nitrogen inputs in a semiarid grassland. Glob Chang Biol 19:2775–2784

    Article  PubMed  Google Scholar 

  • Lü XT, Dijkstra FA, Kong DL, Wang ZW, Han XG (2014) Plant nitrogen uptake drives responses of producitivity to nitrogen and water addition in a grassland. Sci Rep 4:4817

    PubMed Central  PubMed  Google Scholar 

  • McKane RB, Johnson LC, Shaver GR, Nadelhoffer KJ, Rastetter EB, Fry B, Giblin AE, Kielland K, Kwiatkowski BL, Laundre JA, Murray G (2002) Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature 415:68–71

    Article  CAS  PubMed  Google Scholar 

  • Medina-Roldan E, Paz-Ferreiro J, Bardgett RD (2012) Grazing exclusion affects soil and plant communities, but has no impact on soil carbon storage in an upland grassland. Agric Ecosys Environ 149:118–123

    Article  Google Scholar 

  • Minoletti ML, Boerner REJ (1994) Drought and site fertility effects on foliar nitrogen and phosphorus dynamics and nutrient resorption by the forest understory shrub Viburnum acerifolium L. Am Midl Nat 131:109–119

    Article  Google Scholar 

  • Nelson DW, Sommers LE (1982) Total carbon, organic carbon, and organic matter. In: Page AL, Miller RH, Keeney DR (eds), Methods of Soil Analysis. Madison, WI, 1-129

  • Norris MD, Reich PB (2009) Modest enhancement of nitrogen conservation via retranslocation in response to gradients in N supply and leaf N status. Plant Soil 316:193–204

    Article  CAS  Google Scholar 

  • Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Circular No. 939. USDA.

  • Piñeiro G, Paruelo JM, Jobbagy EG, Jackson RB, Oesterheld M (2009) Grazing effects on belowground C and N stocks along a network of cattle enclosures in temperate and subtropical grasslands of South America. Glob Biogeochem Cycles 23, GB2003. doi:10.1029/2007GB003168

    Article  Google Scholar 

  • Pucheta E, Bonamici I, Cabido M, Diaz S (2004) Below-ground biomass and productivity of a grazed site and a neighbouring ungrazed exclosure in a grassland in central Argentina. Aust Ecol 29:201–208

    Article  Google Scholar 

  • Reszkowska A, Krummelbein J, Peth S, Horn R, Zhao Y, Gan L (2011) Influence of grazing on hydraulic and mechanical properties of semiarid steppe soils under different vegetation type in Inner Mongolia, China. Plant Soil 340:59–72

    Article  CAS  Google Scholar 

  • Richardson SJ, Peltzer DA, Allen RB, McGlone MS (2005) Resorption proficiency along a chronosequence: responses among communities and within species. Ecology 86:20–25

    Article  Google Scholar 

  • Shan YM, Chen DM, Guan XX, Zheng SX, Chen HJ, Wang MJ, Bai YF (2011) Seasonally dependent impacts of grazing on soil nitrogen mineralization and linkages to ecosystem functioning in Inner Mongolia grassland. Soil Biol Biochem 43:1943–1954

    Article  CAS  Google Scholar 

  • Soudzilovskaia NA, Onipchenko VG, Cornelissen JHC, Aerts R (2005) Biomass production, N:P ratio and nutrient limitation in a Caucasian alpine tundra plant community. J Veg Sci 16:399–406

    Article  Google Scholar 

  • Thuiller W, Albert C, Araújo MB, Berry PM, Cabeza M, Guisan A, Hickler T, Midgley GF, Paterson J, Schurr FM, Sykes MT, Zimmermann NE (2008) Predicting global change impacts on plant species’ distributions: future challenges. Persp Plant Ecol Evol Sys 9:137–152

    Article  Google Scholar 

  • Turner BL (2008) Resource partitioning for soil phosphorus: a hypothesis. J Ecol 96:698–702

    Article  CAS  Google Scholar 

  • van Heerwaarden LM, Toet S, Aerts R (2003a) Current measures of nutrient resorption efficiency lead to a substantial underestimation of real resorption efficiency: facts and solutions. Oikos 101:664–669

    Article  Google Scholar 

  • van Heerwaarden LM, Toet S, Aerts R (2003b) Nitrogen and phosphorus resorption efficiency and proficiency in six sub-arctic bog species after 4 years of nitrogen fertilization. J Ecol 91:1060–1070

    Article  Google Scholar 

  • van Wijk MT, Williams M, Gough L, Hobbie SE, Shaver GR (2003) Luxury consumption of soil nutrients: a possible competitive strategy in above-ground and below-ground biomass allocation and root morphology for slow-growing arctic vegetation. J Ecol 91:664–676

    Article  Google Scholar 

  • Walker LR, Wardle DA, Bardgett RD, Clarkson BD (2010) The use of chronosequences in studies of ecological succession and soil development. J Ecol 98:725–736

    Article  Google Scholar 

  • Wang CH, Wan SQ, Xing XR, Zhang L, Han XG (2006) Temperature and soil moisture interactively affected soil net N mineralization in temperate grassland in Northern China. Soil Biol Biochem 38:1101–1110

    Article  CAS  Google Scholar 

  • Xia J, Wan S (2008) Global response patterns of terrestrial plant species to nitrogen addition. New Phytol 179:428–439

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Peth S, Reszkowska A, Gan L, Krummelbein J, Peng XH, Horn R (2011) Response of soil moisture and temperature to grazing intensity in a Leymus chinensis steppe, Inner Mongolia. Plant Soil 340:89–102

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Wu Wei-Jun, Li Qiang, and Li Li for assistance with field and laboratory work. We are grateful to two anonymous reviewers for their constructive comments on this manuscript. This study was funded by National Natural Science Foundation of China (31470505), the National Basic Research Program of China (2015CB150802), and the State Key Laboratory of Vegetation and Environmental Change (Grant No. LVEC-2012kf08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Tao Lü.

Additional information

Responsible Editor: Alfonso Escudero.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 77 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lü, XT., Freschet, G.T., Kazakou, E. et al. Contrasting responses in leaf nutrient-use strategies of two dominant grass species along a 30-yr temperate steppe grazing exclusion chronosequence. Plant Soil 387, 69–79 (2015). https://doi.org/10.1007/s11104-014-2282-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2282-7

Keywords

Navigation