Skip to main content
Log in

Aluminum toxicity to tropical montane forest tree seedlings in southern Ecuador:

Response of nutrient status to elevated Al concentrations

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

We determined the reasons why in nutrient solution increasing Al concentrations >300 μ M inhibited shoot biomass production of Cedrela odorata L., Heliocarpus americanus L., and Tabebuia chrysantha (Jacq.) G. Nicholson while 300 μ M Al stimulated root biomass production of Tabebuia chrysantha.

Methods

Nutrient concentrations in plant tissue after a hydroponic growth experiment were determined.

Results

Increasing Al concentrations significantly decreased Mg concentrations in leaves. Phosphorus concentrations in roots of C. odorata and T. chrysantha were significantly highest in the treatment with 300 μ M Al and correlated significantly with root biomass.

Conclusions

Shoot biomass production was likely inhibited by reduced Mg uptake, impairing photosynthesis. The stimulation of root growth at low Al concentrations can be possibly attributed to improved P uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ali B, Hasan S, Hayat S, Hayat Q, Yadav S, Fariduddin Q, Ahmad A (2008) A role for brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiata L. Wilczek). Environ Exper Bot 62(2):153–159. doi:10.1016/j.envexpbot.2007.07.014

    Article  CAS  Google Scholar 

  • Amberger A (1996) Pflanzenernährung, 4th edn. Ulmer, Stuttgart, 319 p

  • Boy J, Rollenbeck R, Valarezo C, Wilcke W (2008) Amazonian biomass burning-derived acid and nutrient deposition in the north Andean montane forest of Ecuador. Glob Biogeochem Cycles 22:1–16. doi:10.1029/2007GB003158

    Google Scholar 

  • Bruijnzeel L, Veneklaas E (1998) Climatic conditions and tropical, montane forest productivity: The fog has not lifted yet. Ecology 79(1):3–9. doi:10.2307/176859

    Article  Google Scholar 

  • Bruijnzeel LA (2001) Hydrology of tropical montane cloud forests: A reassessment. Water Resour Res 1:1–18

    Google Scholar 

  • Calabrese EJ, Blain RB (2009) Hormesis and plant biology. Environ Pollut 157:42–48. doi:10.1016/j.envpol.2008.07.028

    Article  CAS  PubMed  Google Scholar 

  • Cronan C, Grigal D (1995) Use of calcium/aluminum ratios as indicators of stress in forest ecosystems. J Environ Qual 24(2):209–226

    Article  CAS  Google Scholar 

  • Cuenca G, Herrera R, Medina E (1990) Aluminium tolerance in trees of a tropical cloud forest. Plant Soil 125(2):169–175. doi:10.1007/BF00010654

    Article  CAS  Google Scholar 

  • Dogan I, Ozyigit II, Demir G (2014) Influence of aluminum on mineral nutrient uptake and accumulation in Urtica pilulifera L. J Plant Nutr 37(3):469–481. doi:10.1080/01904167.2013.864306

    Article  CAS  Google Scholar 

  • Gaume A, Mächler F, Frossard E (2001) Aluminum resistance in two cultivars of Zea mays L.: Root exudation of organic acids and influence of phosphorus nutrition. Plant Soil 234:73–81. doi:10.1023/A:1010535132296

    Article  CAS  Google Scholar 

  • Graham CJ (2001) The influence of nitrogen source and aluminum on growth and elemental composition of nemaguard peach seedlings. J Plant Nutr 24(3):423–439. doi:10.1081/PLN-100104970

    Article  CAS  Google Scholar 

  • Hafkenscheid RL (2000) Hydrology and biogeochemistry of tropical montane rain forests of contrasting stature in the Blue Mountains, Jamaica. Print Partners Ipskamp, Enschede, The Netherlands, pp 303

  • Hajiboland R, Bahrami Rad S, Barceló J, Poschenrieder C (2013a) Mechanisms of aluminum-induced growth stimulation in tea (Camellia sinensis). J Plant Nutr Soil Sci 176(4):616–625. doi:10.1002/jpln.201200311

    Article  CAS  Google Scholar 

  • Hajiboland R, Barceló J, Poschenrieder C, Tolrà R (2013b) Amelioration of iron toxicity: A mechanism for aluminum-induced growth stimulation in tea plants. J Inorg Biochem 128:183–187. doi:10.1016/j.jinorgbio.2013.07.007

    Article  CAS  PubMed  Google Scholar 

  • Hoagland D, Arnon D (1950) The water-culture method for growing plants without soil. University of California, Berkeley, pp 32

  • Jiang HX, Tang N, Zheng JG, Li Y, Chen LS (2009) Phosphorus alleviates aluminum-induced inhibition of growth and photosynthesis in Citrus grandis seedlings. Physiol Plant 137(3):298–311. doi:10.1111/j.1399-3054.2009.01288.x

    Article  CAS  PubMed  Google Scholar 

  • Keltjens WG (1995) Magnesium uptake by Al-stressed maize plants with special emphasis on cation interactions at root exchange sites. In: Date R, Grundon N, Rayment G, Probert M (eds) Plant-soil interactions at low pH: Principles and management, Developments in Plant and Soil Sciences, Vol 64, Springer Netherlands, pp 307–312, doi:10.1007/978-94-011-0221-642

  • Kinraide TB (2003) Toxicity factors in acidic forest soils: attempts to evaluate separately the toxic effects of excessive Al3+ and H+ and insufficient Ca2+ and Mg2+ upon root elongation. Eur J Soil Sci 54(2):323–333. doi:10.1046/j.1365-2389.2003.00538.x

    Article  CAS  Google Scholar 

  • Laing W, Greer D, Sun O, Beets P, Lowe A, Payn T (2000) Physiological impacts of Mg deficiency in Pinus radiata: Growth and photosynthesis. New Phytol 146(1):47–57. doi:10.1046/j.1469-8137.2000.00616.x

    Article  CAS  Google Scholar 

  • Leuschner C, Moser G, Bertsch C, Röderstein M, Hertel D (2007) Large altitudinal increase in tree root/shoot ratio in tropical mountain forests of Ecuador. Basic Appl Ecol 8(3):219–230. doi:10.1016/j.baae.2006.02.004

    Article  Google Scholar 

  • Liao H, Wan H, Shaff J, Wang X, Yan X, Kochian LV (2006) Phosphorus and aluminum interactions in soybean in relation to aluminum tolerance. Exudation of specific organic acids from different regions of the intact root system. Plant Physiol 141(2):674–684. doi:10.1104/pp.105.076497

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lilienfein J, Wilcke W, Zimmermann R, Gerstberger P, Araújo GM, Zech W (2001) Nutrient storage in soil and biomass of native Brazilian Cerrado. J Plant Nutr Soil Sci 164(5):487–495. doi:10.1002/1522-2624(200110)164:5<487::AID-JPLN487>3.0.CO;2-I

    Article  CAS  Google Scholar 

  • Ma JF, Ryan PR, Delhaize E (2001) Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6(6):273–278. doi:10.1016/S1360-1385(01)01961-6

    Article  CAS  PubMed  Google Scholar 

  • Marschner P (2012) Marschner’s mineral nutrition of higher plants, 3rd edn. Academic Press, London, p 649

    Google Scholar 

  • Mosandl R, Günter S (2008) Sustainable management of tropical mountain forests in Ecuador, vol 2. University of Göttingen, Germany, pp 177–193

    Google Scholar 

  • Osaki M, Watanabe T, Tadano T (1997) Beneficial effect of aluminum on growth of plants adapted to low pH soils. Soil Sci Plant Nutr 43(3):551–563. doi:10.1080/00380768.1997.10414782

    Article  CAS  Google Scholar 

  • Poschenrieder C, Cabot C, Martos S, Gallego B, Barceló J (2013) Do toxic ions induce hormesis in plants? Plant Sci 212:15–25. doi:10.1016/j.plantsci.2013.07.012

    Article  CAS  PubMed  Google Scholar 

  • Poschenrieder C, Tolrá R, Barceló J (2006) Can metals defend plants against biotic stress? Trends Plant Sci 11(6):288–295. doi:10.1016/j.tplants.2006.04.007

    Article  CAS  PubMed  Google Scholar 

  • Core Team R (2013) R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, URL http://www.R-project.org/

  • Rehmus A, Bigalke M, Valarezo C, Mora Castillo J, Wilcke W (2014) Aluminum toxicity to tropical montane forest tree seedlings in southern Ecuador: Response of biomass and plant morphology to elevated Al concentrations. Plant Soil 1–15. doi:10.1007/s11104-014-2110-0

  • Rengel Z (1992) Role of calcium in aluminium toxicity. New Phytol 121:499–513

    Article  CAS  Google Scholar 

  • Shanmughavel P, Liqing S, Zheng Z, Min C (2001) Nutrient cycling in a tropical seasonal rain forest of Xishuangbanna, southwest China. Part 1: tree species: nutrient distribution and uptake. Bioresour Technol 80(3):163–170. doi:10.1016/S0960-8524(01)00095-5

    Article  CAS  PubMed  Google Scholar 

  • Silva S, Pinto G, Dias MC, Correia CM, Moutinho-Pereira J, Pinto-Carnide O, Santos C (2012) Aluminium long-term stress differently affects photosynthesis in rye genotypes. Plant Physiol Biochem 54:105–112. doi:10.1016/j.plaphy.2012.02.004

    Article  CAS  PubMed  Google Scholar 

  • Sun OJ, Payn TW (1999) Magnesium nutrition and photosynthesis in Pinus radiata: Clonal variation and influence of potassium. Tree Physiol 19(8):535–540. doi:10.1093/treephys/19.8.535

    Article  CAS  PubMed  Google Scholar 

  • Thornton F, Schaedle M, Raynal D (1987) Effects of aluminum on red spruce seedlings in solution culture. Environ Exper Bot 27(4):489–498. doi:10.1016/0098-8472(87)90030-X

    Article  CAS  Google Scholar 

  • Watanabe T, Osaki M (2001) Influence of aluminum and phosphorus on growth and xylem sap composition in Melastoma malabathricum L. Plant Soil 237(1):63–70. doi:10.1023/A:1013395814958

    Article  CAS  Google Scholar 

  • Wilcke W, Leimer S, Peters T, Emck RR P, Trachte K, Valarezo C, Bendix J (2013) The nitrogen cycle of tropical montane forest in Ecuador turns inorganic under environmental change. Glob Biogeochem Cycle. doi:10.1002/2012GB004471

  • Zhang XB, Liu P, Yang YS, Xu GD (2007) Effect of Al in soil on photosynthesis and related morphological and physiological characteristics of two soybean genotypes. Bot Stud 48:435–444

    CAS  Google Scholar 

  • Zheng SJ, Yang JL, He YF, Yu XH, Zhang L, You JF, Shen RF, Matsumoto H (2005) Immobilization of aluminum with phosphorus in roots is associated with high aluminum resistance in buckwheat. Plant Physiol 138(1):297–303. doi:10.1104/pp.105.059667

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Karoline Klaus, Katharina Kitzinger, Jose Luis Peña Caivinagua and Orly Mendoza Aguirre for support in set up of the experiment, Nature and Culture International in Loja, EC, for providing the study area and the research station, Ecuadorian authorities for the research permit and the German Research Foundation (DFG) for funding (FOR 816, Wi 1601/8-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Wilcke.

Additional information

Responsible Editor: Jian Feng Ma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehmus, A., Bigalke, M., Valarezo, C. et al. Aluminum toxicity to tropical montane forest tree seedlings in southern Ecuador:. Plant Soil 388, 87–97 (2015). https://doi.org/10.1007/s11104-014-2276-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-014-2276-5

Keywords

Navigation