Skip to main content

Advertisement

Log in

Linking physical quality and CO2 emissions under long-term no-till and conventional-till in a subtropical soil in Brazil

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

The decomposition rate of soil organic matter (SOM) is affected by soil management practices and particularly by the physical and hydraulic attributes of the soil. Previous studies have indicated that the SOM decomposition is influenced by the Least Limiting Water Range (LLWR). Therefore, the objective of this study was to relate the C-CO2 emissions to the LLWR of the surficial layer of soil under two management systems: no-tillage (NT), conducted for 20 years, and conventional tillage (CT). Soil in NT presented greater soil organic carbon (SOC) stocks than in CT. Emissions of C-CO2 were greater in the NT than in the CT, because of the greater carbon stocks in the soil surface layer and the greater biological activity (due to the improvement of the soil structure) in NT as compared to CT. The use of LLWR associated with the measurement of C-CO2 emissions from the soil could help to predict the efficacy of the adopted management system for trapping carbon in the soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Achard F, Eva HD, Mayaux P, Stibig HJ, Bemward A (2004) Improved estimates of net carbon emissions from land cover change in the tropics for the 1990 s. Global Biogeochemistry Cycles 18:1–11

    Article  Google Scholar 

  • Alef K (1995) Estimation of soil respiration. In: Alef K, Nannipieri P (Eds.). Methods in soil microbiology and biochemistry. New York: Academic 464–470 ISBN-10: 0125138407

  • Amado TJC, Fernandez SB, Mielniczuk J (1998) Nitrogen availability as affected by ten years of cover crop and tillage systems in Southern Brazil. J Soil Water Cons 53:268–271

    Google Scholar 

  • Amado TJ, Pontelli CB, Júnior GG, Brum ACR, Eltz FLF, Pedruzzi C (1999) Seqüestro de carbono em sistemas conservacionistas na Depressão Central do Rio Grande do Sul. In Reunión bienal de la red latino americana de agricultura conservacionista, 42–43. Florianópolis: Universidade Federal de Santa Catarina

  • Amado TJC, Bayer C, Eltz FLF, Brum ACR (2001) Potencial de culturas de cobertura em acumular carbono e nitrogênio no solo no plantio direto e melhoria da qualidade ambiental. R Bras Ci Solo 25:189–197

    CAS  Google Scholar 

  • Anderson JM, Domsch KH (1990) Application of ecophysiological quotients (qCO and qD) on microbial biomass from soils of different cropping histories. Soil Biol Biochem 22:251–255

    Article  Google Scholar 

  • Archer JR, Smith PD (1972) The relation between bulk density, available water capacity and air capacity of soils. J Soil Sci 23:475–480. doi:10.1111/j.1365-2389.1972.tb01678.x

    Article  Google Scholar 

  • Bayer C, Martin-Neto L, Mielniczuk J, Ceretta CA (2000a) Effect of no-till cropping systems on soil organic matter in a sandy clay loam Acrisol from southern Brazil monitored by electron spin resonance and nuclear magnetic resonance. Soil Till Res 53:95–104. doi:10.1016/S0167-1987(99)00088-4

    Article  Google Scholar 

  • Bayer C, Mielniczuk J, Amado TJC, Martin-Neto L, Fernandes SV (2000b) Organic matter storage in a sandy clay loam Acrisol affected by tillage and cropping systems in southern Brazil. Soil Till Res 54:101–109. doi:10.1016/S0167-1987(00)00090-8

    Article  Google Scholar 

  • Bayer C, Martin NL, Pavinato A, Dieckow J (2006) Carbon sequestration in two Brazilian Cerrado soils under no-till. Soil Till Res 86:237–245. doi:10.1016/j.still.2005.02.023

    Article  Google Scholar 

  • Bernoux M, Cerri CC, Cerri CEP, Siqueira Neto M et al (2006) Cropping systems, carbon sequestration and erosion in Brazil. Agron Sust Develop 26:1–8. doi:10.1051/agro:2005055

    Article  CAS  Google Scholar 

  • Brady NC, Weil RR (2002) The nature and properties of soils, 13th edn. Prentice-Hall, Upper Saddle River, NJ. ISBN 13: 9780130167637

    Google Scholar 

  • Bronick CJ, Lal R (2005) Soil structure and management: a review. Geoderma 124:3–22. doi:10.1016/j.geoderma.2005.10.003

    Article  CAS  Google Scholar 

  • Brookes PC, Cayuela ML, Contin NMM, Kemmitt SJC (2008) The mineralisation of fresh and humified soil organic matter by the soil microbial biomass. Waste Manag 28:716–722. doi:10.1016/j.wasman.2007.09.015

    Article  CAS  PubMed  Google Scholar 

  • Busscher WJ (1990) Adjustment of flat-tipped penetrometer resistance data to a commom water content. Tran Am Soc Agric Eng 33:519–524

    Google Scholar 

  • Castro Filho C, Muzilli O, Podanoschi AL (1998) Estabilidade dos agregados e sua relação com o teor e carbono orgânico num latossolo distrófico, em função de sistemas de plantio, rotações de culturas e métodos de preparo das amostras. R Bras Ci Solo 22:527–538

    Google Scholar 

  • Chan KY, Heenan DP, So HB (2003) Sequestration of carbon and changes in soil quality under conservation tillage on lighttextured soils in Australia: a review. Aust J Exp Agric 43:325–334. doi:10.1071/EA02077

    Article  Google Scholar 

  • Comissão de fertilidade do solo—CFSRS/SC. Recomendação de adubação e calagem para os estados do Rio Grande do Sul e de Santa Catarina. 2.ed. Passo Fundo, Sociedade Brasileira de Ciência do Solo/Núcleo Regional Sul/ Embrapa-CNPT, 1989. 128p

  • Conant RT, Klopatek JM, Klopatek CC (2000) Environmental factors controlling soil respiration in three semiarid ecosystems. Soil Sci Soc Am J 64:383–390. doi:10.1016/j.soilbio.2004.02.013

    Article  CAS  Google Scholar 

  • Corazza EJ, Silva JE, Resck DVS, AC GOMES (1999) Comportamento de diferentes sistemas de manejo como fonte ou depósito de carbono em relação a vegetação de Cerrado. R Bras Ci Solo 23:425–432

    CAS  Google Scholar 

  • Cornish PS, Lymbery JR (1987) Reduced early growth of direct drilled wheat in southern New South Wales: causes and consequences. Aust J Exp Agric 27:869–880. doi:10.1071/EA9870869

    Article  Google Scholar 

  • da Silva AP, Kay BD, Perfect E (1994) Characterization of the least limiting water range. Soil Sci Soc Am J 58:1775–1781

    Article  Google Scholar 

  • da Silva AP, Kay BD (1997) Estimating the least limiting water range of soil from properties and management. Soil Sci Soc Am J 61:877–883

    Article  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173. doi:10.1038/nature04514

    Article  CAS  PubMed  Google Scholar 

  • Dexter AR, Horn R, Kemper WD (1988) Two mechanisms for age-hardening of soils. J Soil Sci 39:163–175. doi:10.1111/j.1365-2389.1988.tb01203.x

    Article  Google Scholar 

  • Diekow J, Mielniczuk J, Knicker H, Bayer C, Dick DP, Kögel-Knabner I (2005) Soil C and N stocks as affected by cropping systems and nitrogen fertilisation in a southern Brazil Acrisol managed under no-tillage for 17 years. Soil Till Res 81:87–95. doi:10.1016/j.geoderma.2006.01.002

    Article  Google Scholar 

  • Doran JW, Parkin TB (1994) Defining and assessing soil quality. In: Doran JW, Coleman DC, Bezdicek DF, Stewart BA (eds). Defining soil quality for a sustainable environment. Soil Sci Soc Am J 35:3–22. doi:10.1016/0016-7061(95)90042-x

  • Ellert BH, Bettany JR (1996) Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Can J Soil Sci 75:529–538

    Google Scholar 

  • Febrapdp (2009) Federação Brasileira de Plantio Direto na Palha. http://www.febrapdp.org.br. Accessed on 12 march. 2009.

  • Franzluebbers AJ, Hons FM, Zuberer DA (1995) Tillageinduced seasonal changes in soil physical properties affecting soil CO2 evolution under intensive cropping. Soil Till Res 34:41–60. doi:10.1016/0167-1987(94)00450-S

    Article  Google Scholar 

  • Grant CD, Kay BD, Groenevelt PH, Kidd GE, Thurtell GW (1985) Spectral analysis of micropenetrometer data to characterize soil structure. Can J Soil Sci 65:789–804. doi:10.1590/S0103-90162009000500001

    Article  Google Scholar 

  • Gupta SC, Larson WE (1979) Estimating soil water retention characteristics from particle size distribution, organic matter content and bulk density. Water Resour Res 15:1633–1635

    Article  Google Scholar 

  • Ismail I, Blevins RL, Frye WW (1994) Long-term no-tillage effects on soil properties and continuous corn yields. Soil Sci Soc Am J 58:193–198. doi:10.2134/agronj2006.0005

    Article  Google Scholar 

  • Kemper WD, Rosenau RC (1984) Soil cohesion as affected by time and water content. Soil Sci Soc Am J 48:1001–1006

    Article  Google Scholar 

  • Kirschbaum MUF (2006) The temperature dependence of organic-matter decomposition-still a topic of debate. Soil Biol Biochem 39:2510–2518. doi:10.1016/j.soilbio.2006.01.030

    Article  Google Scholar 

  • Klute A (1986) Water retention: laboratory methods. In: Klute A, ed. Methods of soil analysis: physical and mineralogical methods. Am Soc Agron 2:635–660. doi:10.1590/S1415-43662001000200015

  • Köppen W (1948) Climatologia: con un estudio de los climas de la tierra. Fondo de Cultura Econômica, México, 479p

    Google Scholar 

  • Lal R, Kimble J, Follett RF, Cole CV (1998) The potential of U.S. cropland to sequester carbon and mitigate the greenhouse effect. Ann Arbor: Ann Arbor Press, 123p. ISBN-13: 978-1575041124

  • Leão TP, da Silva AP, Tormena CA (2005) An algorithm for calculating the least limiting water range of soils. Am Soc Agron. doi:10.2134/agronj2004.0229

    Google Scholar 

  • Leão TP, da Silva AP (2004) A simplified Excel algorithm for estimating the least limiting water range of soils. Scientia Agri. doi:10.1590/S0103-90162004000600013

    Google Scholar 

  • Liebig MA, Jones AJ, Doran JW, Mielke LN (1995) Potential soil respiration and relationship to soil properties in ridge tillage. Soil Sci Soc Am J 59:1430–1435. INIST: 6109, 35400005478079.0320

    Google Scholar 

  • Lima VC, Lima JMC, Eduardo BJP, Cerri CC (1994) Conteúdo de carbono e biomassa microbiana em agrosistemas: comparação entre métodos de preparo do solo. R Setor Ci Agr 13:297–302

    Google Scholar 

  • Linn DM, Doran JW (1984) Effects of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soil. Soil Sci Soc Am J 48:1267–1272

    Article  CAS  Google Scholar 

  • Lisboa CC, Conant RT, Haddix ML, Cerri CEP, Cerri CC (2009) Soil carbon turnover measurement by physical fractionation at a forest-t-pasture chronosequence in the Brazilian Amazon. Ecosystems 12:1212–1221

    Article  CAS  Google Scholar 

  • Mann LK (1986) Changes in soil carbon storage after cultivation. J Soil Sci 142:279–288. doi:10.3334/CDIAC/tcm.007

    Article  CAS  Google Scholar 

  • Melillo JM, Steudler PA, Aber JD, Newkirk K, Lux H et al (2002) Soil warming and carbon-cycle feedbacks to the climate system. Science 298:2173–2176. doi:10.1126/science.1074153

    Article  CAS  PubMed  Google Scholar 

  • Mondini C, Cayuela ML, Sanchez-Monedero MA et al (2006) Soil microbial biomass activation by trace amounts of readily available substrate. Biol Fert Soils 42:542–549. doi:10.1007/s00374-005-0049-2

    Article  Google Scholar 

  • Nelson, DW, Sommers LE (1982) Total carbon, organic carbon, and organic matter. p. 539–580. In A.L. Page et al. (ed.) Methods of soil Analysis. Part 2. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI

  • Neilson JW, Pepper IL (1990) Soil Respiration as an Index of Soil Aeration. Soil Sci Soc Am J 54:428–432

    Article  Google Scholar 

  • Paustian K, Six J, Elliott ET, Hunt HW (2000) Management options for reducing CO2 emissions form agricultural soils. Biogeochemistry 48:147–163. doi:10.1023/A:1006271331703

    Article  CAS  Google Scholar 

  • Peixoto RT, Stella LM, Machulek JA, Mehl HU, Batista EA (1999) Distribuição das frações granulométricas da matéria orgânica em função do manejo do solos. In Encontro brasileiro sobre substâncias húmicas, 346–348. Santa Maria: iconos. doi:10.1051/agro:2005055

  • Reicosky DC, Dugas WA, Torbert HA (1997) Tillage-induced soil carbon dioxide loss from different cropping systems. Soil Till Res 41:105–118. doi:10.1016/S0167-1987(96)01080-x

    Article  Google Scholar 

  • Resck DVS, Vasconcellos CA, Vilela L, Macedo MCM (2000) Impact of conversion of brazilian Cerrados to cropland and pastureland on soil carbon pool and dynamics. In Global climate change and tropical ecosystems, ed. R. Lal, J.M. Kimble, and B.A. Stewart, 169–196. Boca Raton: CRC Press. ISBN-13: 9781566704854

  • Riezebos HTH, Loerts AC (1998) Influence of land use change and tillage practice on soil organic matter in southern Brazil and eastern Paraguay. Soil Till Res 49:271–275. doi:10.1016/S0167-1987(98)00176-7

    Article  Google Scholar 

  • Sa JCM (2001) Dinâmica da matéria orgânica do solo em sistemas de manejo convencional e plantio direto no estado do Paraná. Thesis (Ph.D.)—Universidade de São Paulo

  • Sa JCM, Cerri CC, Lal R, Dick WA, Venzke Filho S, Piccolo MC, Feigl B (2001) Organic matter dynamics and carbon sequestration rates for a tillage chronosequence in a Brazilian Oxisol. Soil Sci Soc Am J 65:1486–1499. INIST: 6109, 35400009940140.0200

    Google Scholar 

  • Sanchez-Maranon M, Soriano M, Delgado G, Delgado R (2002) Soil quality in Mediterranean Mountain environments: effects of land use change. Soil Sci Soc Am J 66:948–958. INIST : 6109, 35400010063254.0310

    Google Scholar 

  • SAS Statistical analysis system (2002) Getting Started with the SAS Learning Edition. SAS Institute Inc, Cary, p 86

    Google Scholar 

  • Schuman GE, Janzen HH, Herrick JE (2002) Soil carbon dynamics and potential carbon sequestration by rangelands. Envir Pollution 116:391–396. doi:10.1016/S0269-7491(01)00215-9

    Article  CAS  Google Scholar 

  • Semmel H, Horn R, Hell U, Dexter AR, Schulze ED (1990) The dynamics of aggregate formation and the effect on soil physical properties. Soil Tech 3:113–129

    Article  Google Scholar 

  • Singh JS, Gupta SR (1977) Plant Decomposition and soil respiration in Terrestrial Ecosystems. Botan Rev 43:449–528. doi:10.1007/BF02860844

    Article  CAS  Google Scholar 

  • Sisti CPJ, Santos HP, Kohhann R, Alves BJR, Urquiaga S, Boddey RM (2004) Change in carbon and nitrogen stocks in soil under 13 years of conventional or zero tillage in Southern Brazil. Soil Till Res 76:39–58. doi:10.1016/j.still.2003.08.007

    Article  Google Scholar 

  • Six J, Feller C, Denef K, Ogle SM, Sa JCM, Albrecht A (2002) Soil organic matter, biota and aggregation in temperate and tropical soils-effects of no-tillage. Agronomie 22:755–775

    Article  Google Scholar 

  • Skopp J, Jawson MD, Doran JW (1990) Steady-state aerobic microbial activity as a function of soil water content. Soil Sci Soc Am J 54:1619–1625

    Article  Google Scholar 

  • Smedemma LK (1993) Drainage performance and soil management. Soil Tech 6:183–189

    Article  Google Scholar 

  • Smith P, Powlson DS, Glendining MJ, Smith JU (1998) Preliminary estimates of the potential for carbon mitigation in European soils through no-till farming. Global Chan Biol 4:679–685. doi:10.3334/CDIAC/tcm.003

    Article  Google Scholar 

  • Snyder VA, Miller RD (1985) Tensile strength of unsaturated soils. Soil Sci Soc Am J 49:58–65

    Article  Google Scholar 

  • Soil Survey Staff (1994) Keys to soil taxonomy. 6.ed. Washington, USDA Natural Resources Conservation Service, US Govt. Printing Office, 306 p

  • Stirzaker RJ (1997) Processing tomato response to soil compaction and fumigation. Aust J Exp Agric 37:477–483. doi:10.1071/EA96142

    Article  Google Scholar 

  • Tormena CA, da Silva AP, Libardi PL (1998) Caracterização do intervalo hídrico ótimo de um latossolo roxo sob plantio direto. R Bras Ci Solo 22:573–581

    Google Scholar 

  • Tormena CA, da Silva AP, Libardi PL (1999) Soil physical quality of a Brazilian Oxisol under two tillage systems using the least limiting water range approach. Soil Till Res 52:223–232. doi:10.1016/S0167-1987(99)00086-0

    Article  Google Scholar 

  • Utomo WH, Dexter AR (1981) Age-hardening of agricultural top soils. J Soil Sci 32:335–350. doi:10.1111/j.1365-2389.1981.tb01710.x

    Article  Google Scholar 

  • Valerie AO, Cook FJ (1983) Relationship between soil respiration and soil moisture. Soil Biol Bioch 15:447–453. doi:10.1016/j.soilbio.2007.12.012

    Article  Google Scholar 

  • Vasconcellos CA, Figueiredo APM, França GE, Coelho AM, Bressan W (1998) Manejo do solo e a atividade microbiana em latossolo vermelho-escuro da região de Sete Lagoas, MG. Pesq Agrop Bras 33:1897–1905

    Google Scholar 

  • Waldrop MP, Firestone MK (2004) Altered utilization patterns of young and old C by microorganisms caused by temperature shifts and N additions. Biogeochemistry 67:235–248. doi:10.1023/B:BIOG.0000015321.51462.41

    Article  CAS  Google Scholar 

  • Yoo G, Wander MM (2006) Influence of tillage practices on soil structural controls over carbon mineralization. Soil Sci Soc Am J 70:651–659. doi:10.2136/sssaj2005.0036

    Article  CAS  Google Scholar 

  • Yoo G, Nissen TM, Wander MM (2006) Use of Physical Properties to Predict the Effects of Tillage Practices on Organic Matter Dynamics in Three Illinois Soils. J Env Qual 35:1576–83. doi:10.2134/jeq2005.0225

    Article  CAS  Google Scholar 

  • Zak DR, Holmes WE, MacDonald NW, Pregitzer KS (1999) Soil temperature, matric potential, and the kinetics of microbial respiration and nitrogen mineralization. Soil Sci Soc Am J 63:575–584. INIST: 6109, 35400008945959.0210

    Google Scholar 

Download references

Acknowledgements

This research work was supported partly by grants and fellowships from CNPq, FAPESP and CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Eduardo Pellegrino Cerri.

Additional information

Responsible Editor: M. Francesca Cotrufo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medeiros, J.C., da Silva, A.P., Cerri, C.E.P. et al. Linking physical quality and CO2 emissions under long-term no-till and conventional-till in a subtropical soil in Brazil. Plant Soil 338, 5–15 (2011). https://doi.org/10.1007/s11104-010-0420-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-010-0420-4

Keywords

Navigation