Skip to main content

Advertisement

Log in

Plant hydraulic lift of soil water – implications for crop production and land restoration

  • Marschner Review
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Water more than other factors limits growth and productivity of terrestrial plants. Strategies of plants to cope with soil drought include hydraulic redistribution of water via roots from moist to dry soil. During periods of drought, water may be transported upward through root systems from moister subsurface to dry surface soil by a process known as “hydraulic lift” (HL). On warm and dry days when plant transpiration peaks, hydraulically lifted water released into soil can support growth and survival of the lifting and neighboring plants. Soil and rhizosphere microorganisms and the soil fauna could also benefit from HL-derived water, which eventually increases the availability of nutrients to plants. Although HL was examined mainly in the context of terrestrial plant ecology, this biological subterranean sprinkler process may also prove to be a sustainable alternative to conventional engineered irrigation techniques currently used for agronomical purposes. Therefore, this review aims to outline and discuss potential practical application of HL for crop production, land restoration, and soil phytoremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alexander M (1999) Biodegradation and bioremediation, 2nd edn. Academic, San Diego, CA, p 453

    Google Scholar 

  • Baitulin IO (1979) Kornevaja sistema rastenii aridnoi zony Kazachstana [Root systems of plants in arid zones of Kazakhstan]. Nauka, Alma-Ata, p 183

    Google Scholar 

  • Baker JM, van Bavel CHM (1988) Water transfer through cotton plants connecting soil regions of differing water potential. Agron J 80:993–997

    Google Scholar 

  • Baker AJM, Whiting SN (2002) In search of the Holy Grail: a further step in understanding metal hyperaccumulation? New Phytol 155:1–4

    Article  Google Scholar 

  • Barton C, Marx D, Adriano D, Koo BJ, Newman L, Czapka S et al (2005) Phytostabilization of a landfill containing coal combustion waste. Environ Geosci 12:251–265

    Article  Google Scholar 

  • Bashan Y, Levanony H (1987) Horizontal and vertical movement of Azospirillum brasilense Cd in the soil and along the rhizosphere of wheat and weeds in controlled and field environments. J Gen Microbiol 133:3473–3480

    Google Scholar 

  • Borg H, Grimes DW (1986) Depth development of roots with time: an empirical description. Trans ASEA 29:194–197

    Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    Article  PubMed  CAS  Google Scholar 

  • Braezeale JF (1930) Maintenance of moisture-equilibrium and nutrition of plants at and below the wilting percentage. Ariz Agric Exp Stn Tech Bull 29:137–177

    Google Scholar 

  • Brauns J, Kast K, Schneider H, Konold W, Wattendorf P, Leisner B (1997) Forstwirtschaftliche Rekultivierung von Deponien mit TA Siedlungsabfallkonformer Oberflächenabdichtung. Texte und Berichte zur Abfallwirtschaft 13:97

    Google Scholar 

  • Broadley MR, Willey NJ, Wilkins JC, Baker AJM, Mead A, White PJ (2001) Phylogenetic variation in heavy metal accumulation in angiosperms. New Phytol 152:9–27

    Article  CAS  Google Scholar 

  • Brooks JR, Meinzer FC, Coulombe R, Gregg J (2002) Hydraulic redistribution of soil water during summer drought in two contrasting Pacific Northwest coniferous forests. Tree Physiol 22:1107–1117

    PubMed  Google Scholar 

  • Burgess SSO, Adams MA, Turner NC, Ong CK (1998) The redistribution of soil water by tree root systems. Oecologia 115:306–311

    Article  Google Scholar 

  • Caldwell MM, Richards JH (1989) Hydraulic lift: water efflux from upper roots improves effectiveness of water uptake by deep roots. Oecologia 79:1–5

    Article  Google Scholar 

  • Caldwell MM, Dawson TE, Richards JH (1998) Hydraulic lift: consequences of water efflux from the roots of plants. Oecologia 113:151–161

    Article  Google Scholar 

  • Callaway RM, Pugnaire FI (1999) Facilitation in plant communities. In: Pugnaire FI, Valladares F (eds) Handbook of functional plant ecology. Marcel Dekker, New York, pp 623–648

    Google Scholar 

  • Canadell J, Jackson RB, Ehleringer JR, Mooney HA, Sala OE, Schulze E-D (1996) Maximum rooting depth of vegetation types at the global scale. Oecologia 108:583–595

    Article  Google Scholar 

  • Chen BD, Zhu Y-G, Duan J, Xiao XY, Smith SE (2007) Effects of arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by four plant species in copper mine tailings. Environ Pollut 147:374–380

    Article  PubMed  CAS  Google Scholar 

  • Clothier BE, Green SR (1997) Roots: the big movers of water and chemical in soil. Soil Sci 162:534–543

    Article  CAS  Google Scholar 

  • Corak SJ, Blevins DG, Pallardy SG (1987) Water transfer in an alfalfa/maize association: survival of maize during drought. Plant Physiol 84:582–586

    Article  PubMed  CAS  Google Scholar 

  • Cunningham SD, Anderson TA, Schwab AP, Hsu FC (1996) Phytoremediation of soils contaminated with organic pollutants. Adv Agron 56:55–114

    Article  CAS  Google Scholar 

  • Davies KG, Whitbread R (1989) Factors affecting the colonisation of root systems by fluorescent Pseudomonads: the effects of water, temperature and soil microflora. Plant Soil 116:247–256

    Article  Google Scholar 

  • Dawson TE (1993) Hydraulic lift and water use by plants: implications for water balance, performance and plant–plant interactions. Oecologia 95:565–574

    Google Scholar 

  • Dawson TE (1998) Water loss from tree roots influences soil water and nutrient status and plant performances. In: Flores HE, Lynch JP, Eissenstat DM (eds) Radical biology: advances and perspectives in the function of plant roots (current topics in plant physiology no. 18). American Society of Plant Physiologists, Rockville, MD, pp 235–250

    Google Scholar 

  • Denef K, Six J, Paustian K, Merckx R (2001) Importance of macroaggregate dynamics in controlling soil carbon stabilization: short-term effects of physical disturbance induced by dry–wet cycles. Soil Biol Biochem 33:2145–2153

    Article  CAS  Google Scholar 

  • Dörter K (1986) Landwirtschaftliche Meliorationen. VEB Deutscher Landwirtschaftsverlag, Berlin, p 316

    Google Scholar 

  • Dupraz C, Burgess P, Gavaland A, Graves A, Herzog F, Incoll L, Werf van der W et al (2005) Synthesis of the silvoarable agroforestry for Europe (SAFE) project. INRA–UMR System Editions, Montpellier, p 254

    Google Scholar 

  • El-Mokadem MT, Helemish FA, Abou-Bakr ZYM, Sheteawi SA (1989) Associative effect of Azospirillum lipoferum and Azotobacter chroococcum with Rhizobium spp. on mineral composition and growth of chickpea (Cicer arietinum) on sandy soils. Zentralbl Mikrobiol 144:255–265

    Google Scholar 

  • Emerman SH, Dawson TE (1996) Hydraulic lift and its influence on the water content of the rhizosphere: an example from sugar maple, Acer saccharum. Oecologia 108:273–278

    Google Scholar 

  • Espeleta JF, West JB, Donovan LA (2004) Species-specific patterns of hydraulic lift in co-occurring adult trees and grasses in a sandhill community. Oecologia 138:341–349

    Article  PubMed  CAS  Google Scholar 

  • Eswaran H, Beinroth F, Reich P (1999) Global land resources and population supporting capacity. Am J Altern Agric 14:129–136

    Article  Google Scholar 

  • FAO (2002) Crops and drops: making the best use of water for agriculture. Food and Agriculture Organization of the United Nations (Land and Water Development Division), Rome, p 28

    Google Scholar 

  • FAO (2003) Agriculture, food and water – a contribution to the world water development report. Food and Agriculture Organization of the United Nations, Rome, p 64

    Google Scholar 

  • FAO (2007) Agriculture and water scarcity: a programmatic approach to water use efficiency and agricultural productivity. Food and Agriculture Organization of the United Nations (Committee on Agriculture), Rome, p 12

    Google Scholar 

  • Fiorenza S, Oubre CL, Ward CH (2000) Phytoremediation of hydrocarbon-contaminated soil. CRC, Boca Raton, FL, p 164

    Google Scholar 

  • Fischer H (1999) Begleitwuchsregulierung mittels Hilfspflanzendecken – mögliche negativ-effekte einer waldbaulichen konzeption für Acker-Erstaufforstungen. Forstarchiv 70:207–218

    Google Scholar 

  • Gardener BBM (2007) Diversity and ecology of biocontrol Pseudomonas spp. in agricultural systems. Phytopathology 97:221–226

    Article  Google Scholar 

  • Gómez-Aparicio L, Zamora R, Gómez JM, Hódar JA, Castro J, Baraza E (2004) Applying plant facilitation to reforestation: a meta-analysis of the use of shrubs as nurse plants. Ecol Appl 14:1128–1138

    Article  Google Scholar 

  • Hamashige H (2007) Greek wildfire recovery could take decades. National Geographic News. Available at: http://news.nationalgeographic.com/news/2007/10/071003-greece-wildfires.html, October 3, p 2

  • Hirota I, Sakuratani T, Sato T, Higuchi H, Nawata E (2004) A split-root apparatus for examining the effects of hydraulic lift by trees on the water status of neighbouring crops. Agrofor Syst 60:181–187

    Article  Google Scholar 

  • Höflich G (1993) Effect of variety and environmental factors on the phyto-effectivity of bacterial inoculations in peas. Zentralbl Mikrobiol 148:315–324

    Google Scholar 

  • Höflich G, Wiehe W, Kühn G (1994) Plant growth stimulation by inoculation with symbiotic and associative rhizosphere microorganisms. Experientia 50:897–905

    Article  Google Scholar 

  • Ikram A (1989) Beneficial effects of a plant growth-promoting rhizobacterium on the early growth of Pueraria phaseoloides. J Nat Rubber Res 4:219–222

    Google Scholar 

  • Jackson RB, Sperry JS, Dawson TE (2000) Root water uptake and transport: using physiological processes in global predictions. Trends Plant Sci 5:482–488

    Article  PubMed  CAS  Google Scholar 

  • Jensen RE, Taylor SA, Wiebe HH (1961) Negative transport and resistance to water flow through plants. Plant Physiol 36:633–638

    PubMed  CAS  Google Scholar 

  • Jim CY (2001) Ecological and landscape rehabilitation of a quarry site in Hong Kong. Restor Ecol 9:85–94

    Article  Google Scholar 

  • Kirwan L, Lüscher A, Sebastia MT, Finn JA, Collins RP, Porqueddu C et al (2007) Evenness drives consistent diversity effects in intensive grassland systems across 28 European sites. J Ecol 95:530–539

    Article  Google Scholar 

  • Kjellbom P, Larsson C, Johansson I, Karlsson M, Johanson U (1999) Aquaporins and water homeostasis in plants. Trends Plant Sci 4:308–314

    Article  PubMed  Google Scholar 

  • Kloepper JW (1993) Plant growth-promoting rhizobacteria as biological control agents. In: Metting FB Jr (ed) Soil microbial ecology: applications in agricultural and environmental management. Marcel Dekker, New York, NY, pp 255–274

    Google Scholar 

  • Knoche D, Schramm A, Marski R (2006) Hydrological properties of a double-layer soil cover system for uranium mining dumps in Eastern Germany. Arch Agron Soil Sci 52:37–43

    Article  CAS  Google Scholar 

  • Kozdrój J, Piotrowska-Seget Z, Krupa P (2007) Mycorrhizal fungi and ectomycorrhiza associated bacteria from an industrial desert soil protect pine seedlings against Cd(II) impact. Ecotoxicology 16:449–456

    Article  PubMed  CAS  Google Scholar 

  • Kuiper I, Bloemberg GV, Lugtenberg BJJ (2001) Selection of a plant–bacterium pair as a novel tool for rhizostimulation of polycyclic aromatic hydrocarbon-degrading bacteria. Mol Plant Microbe Interact 14:1197–1205

    Article  PubMed  CAS  Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ (2004) Rhizoremediation: a beneficial plant–microbe interaction. Mol Plant Microbe Interact 17:6–15

    Article  PubMed  CAS  Google Scholar 

  • Kurz-Besson C, Otieno D, Lobo do Vale R, Siegwolf R, Schmidt M, Herd A, Nogueira C, David TS, David JS, Tenhunen J, Pereira JS, Chaves M (2006) Hydraulic lift in cork oak trees in a savannah-type Mediterranean ecosystem and its contribution to the local water balance. Plant Soil 282:361–378

    Article  CAS  Google Scholar 

  • Kutschera L (1960) Wurzelatlas mitteleuropäischer Ackerunkräuter und Kulturpflanzen. DLG-Verlags-GmbH, Frankfurt a. Main, p 574

    Google Scholar 

  • Lambers H, Pons TL, Chapin FS III (2000) Plant physiological ecology. Springer, Berlin, p 540 (2nd Printing)

    Google Scholar 

  • Lasat MM (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J Environ Qual 31:109–120

    PubMed  CAS  Google Scholar 

  • Lee JE, Oliveira RS, Dawson TE, Fung I (2005) Root functioning modifies seasonal climate. Proc Natl Acad Sci USA 102:17576–17581

    Article  PubMed  CAS  Google Scholar 

  • Lefroy EC, Stirzaker RJ (1999) Agroforestry for water management in the cropping zone of southern Australia. Agrofor Syst 45:277–302

    Article  Google Scholar 

  • Leone IA, Gilman IF, Telson MF, Flower FB (1980) Selection of trees and planting techniques for former refuse landfills. METRIA 3:107–117

    Google Scholar 

  • Li W, Han X, Zhang Y, Li Z (2007) Effects of elevated CO2 concentration, irrigation and nitrogenous fertilizer application on the growth and yield of spring wheat in semi-arid areas. Agric Water Manage 87:106–114

    Article  Google Scholar 

  • Liste H-H (1993) Stimulation of symbiosis and growth of lucerne by combined inoculation with Rhizobium meliloti and Pseudomonas fluorescens. Zentralbl Mikrobiol 148:163–176

    Google Scholar 

  • Liste H-H, Alexander M (2000a) Plant-promoted pyrene degradation in soil. Chemosphere 40:7–10

    Article  PubMed  CAS  Google Scholar 

  • Liste H-H, Alexander M (2000b) Accumulation of phenanthrene and pyrene in rhizosphere soil. Chemosphere 40:11–14

    Article  PubMed  CAS  Google Scholar 

  • Liste H-H, Prutz I (2006) Plant performance, dioxygenase-expressing rhizosphere bacteria, and biodegradation of weathered hydrocarbons in contaminated soil. Chemosphere 62:1411–1420

    Article  PubMed  CAS  Google Scholar 

  • Ludwig F, Dawson TE, Kroon H, Berendse F, Prins HH (2003) Hydraulic lift in Acacia tortilis trees on an East African savanna. Oecologia 134:293–300

    PubMed  CAS  Google Scholar 

  • Marton D (1996) Landfill revegation: the hidden assets. Waste Age (May 1st), pp 4

  • McCully ME (1995) Water efflux from the surface of field-grown grass roots. Observations by cryo-scanning electron microscopy. Physiol Plant 95:217–224

    Article  CAS  Google Scholar 

  • Müller-Stoll WR (1965) The problem of water outflow from roots. In: Slavik B (ed) Water stress in plants. Proceedings of a Symposium (Prague, Sept. 30–Oct. 4, 1963). Springer, Dordrecht, The Netherlands, pp 21–25

    Google Scholar 

  • Nair PKR (1993) An Introduction to Agroforestry. Kluwer, Dordrecht, The Netherlands, p 499

    Google Scholar 

  • Nyer EK, Gatliff EG (1996) Phytoremediation. Ground Water Monit Rev 16:58–62

    Article  CAS  Google Scholar 

  • Oldeman LR, Hakkeling RTA, Sombroek WG (1991) World map of the status of human-induced soil degradation: an explanatory note. International Soil Information and Reference Centre, Wageningen, Netherlands, p 34

    Google Scholar 

  • Oliveira RS, Dawson TE, Burgess SSO, Nepstad DC (2005) Hydraulic redistribution in three Amazonian trees. Oecologia 145:354–363

    Article  PubMed  Google Scholar 

  • Oliveira VH, Miranda FR, Lima RN, Cavalcante RRR (2006) Effect of irrigation frequency on cashew nut yield in Northeast Brazil. Sci Hortic (Amsterdam) 108:403–407

    Article  Google Scholar 

  • Olson PE, Fletcher JS (1999) Field evaluation of mulberry root structure with regard to phytoremediation. Bioremediat J 3:27–33

    Article  Google Scholar 

  • Ong CK, Leakey RRB (1999) Why tree–crop interactions in agroforestry appear at odds with tree–grass interactions in tropical savannahs. Agrofor Syst 45:109–129

    Article  Google Scholar 

  • Padilla FM, Pugnaire FI (2006) The role of nurse plants in the restoration of degraded environments. Front Ecol Environ 4:196–202

    Article  Google Scholar 

  • Page V, Weisskopf L, Feller U (2006) Heavy metals in white lupin: uptake, root-to-shoot transfer and redistribution within the plant. New Phytol 171:329–341

    Article  PubMed  CAS  Google Scholar 

  • Pages J-P, Pache G, Joud D, Magnan N, Michalet R (2003) Direct and indirect effects of shade on four forest tree seedlings in the French Alps. Ecology 84:2741–2750

    Article  Google Scholar 

  • Park EJ, Sul WJ, Smucker AJM (2007) Glucose additions to aggregates subjected to drying/wetting cycles promote carbon sequestration and aggregate stability. Soil Biol Biochem 39:2758–2768

    Article  CAS  Google Scholar 

  • Pate JS, Dawson TE (1999) Assessing the performance of woody plants in uptake and utilisation of carbon, water and nutrients: implications for designing agricultural mimic systems. Agrofor Syst 45:245–275

    Article  Google Scholar 

  • Peña JI, Sánchez-Díaz M, Aguirreolea J, Becana M (1988) Increased stress tolerance of nodule activity in the MedicagoRhizobiumGlomus symbiosis under drought. J Plant Physiol 133:79–83

    Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  PubMed  CAS  Google Scholar 

  • Querejeta JI, Egerton-Warburton LM, Allen MF (2007) Hydraulic lift may buffer rhizosphere hyphae against the negative effects of severe soil drying in a California Oak savanna. Soil Biol Biochem 39:409–417

    Article  CAS  Google Scholar 

  • Rajin Anwar M, McKenzie BA, Hill GD (2003) The effect of irrigation and sowing date on crop yield and yield components of Kabuli chickpea (Cicer arietinum L.) in a cool-temperate subhumid climate. J Agric Sci 141:259–271

    Article  Google Scholar 

  • Rao MR, Nair PKR, Ong CK (1998) Biophysical interactions in tropical agroforestry systems. Agrofor Syst 38:3–50

    Article  Google Scholar 

  • Richards JH, Caldwell MM (1987) Hydraulic lift: substantial nocturnal water transport between soil layers by Artemisia tridentata roots. Oecologia 73:486–489

    Article  Google Scholar 

  • Rincón A, Ruíz-Díez B, Fernández-Pascual M, Probanza A, Pozuelo JM, de Felipe MR (2006) Afforestation of degraded soils with Pinus halepensis Mill.: effects of inoculation with selected microorganisms and soil amendment on plant growth, rhizospheric microbial activity and ectomycorrhizal formation. Appl Soil Ecol 34:42–51

    Article  Google Scholar 

  • Sakuratani E, Aoe T, Higuchi H (1999) Reverse flow in roots of Sesbania rostrata measured using the constant power heat balance method. Plant Cell Environ 22:1153–1160

    Article  Google Scholar 

  • Saleh S, Huang X-D, Greenberg BM, Glick BR (2004) Phytoremediation of persistent organic contaminants in the environment. In: Singh A, Ward OP (eds) Soil biology, volume 1. Applied bioremediation and phytoremediation. Springer, Heidelberg, pp 115–134

    Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    Article  PubMed  CAS  Google Scholar 

  • Sanderson MA, Skinner RH, Barker DJ, Edwards GR, Tracy BF, Wedin DA (2004) Plant species diversity and management of temperate forage and grazing land ecosystems. Crop Sci 44:1132–1144

    Google Scholar 

  • Scheffer F, Schachtschabel P (2002) Lehrbuch der Bodenkunde. Spektrum Akademischer, Berlin, p 593

    Google Scholar 

  • Scheierling SM, Cardon GE, Young RA (1997) Impact of irrigation timing on simulated water-crop production functions. Irrig Sci 18:23–31

    Article  Google Scholar 

  • Schenk HJ (2005) Vertical vegetation structure below ground: scaling from root to globe. Prog Bot 66:341–373

    Article  Google Scholar 

  • Schenk HJ (2006) Root competition: beyond resource depletion. J Ecol 94:725–739

    Article  Google Scholar 

  • Schenk HJ, Jackson RB (2002) Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. J Ecol 90:480–494

    Article  Google Scholar 

  • Schippers B, Schroth MN, Hildebrand DC (1967) Emanation of water from underground plant parts. Plant Soil 27:81–91

    Article  Google Scholar 

  • Schnabel WE, White DM (2001) The effect of mycorrhizal fungi on the fate of aldrin: phytoremediation potential. Int J Phytorem 3:221–241

    Article  CAS  Google Scholar 

  • Schnoor JL (2002) Phytoremediation of soil and groundwater. Technical evaluation report 02-01. Ground Water Remediation Technologies Analysis Center, Pittsburgh, PA

    Google Scholar 

  • Schoenmuth B, Pestemer W (2004a) Dendroremediation of trinitrotoluene (TNT); Part 1: literature overview and research concept. Environ Sci Pollut Res 11:273–278

    Article  CAS  Google Scholar 

  • Schoenmuth B, Pestemer W (2004b) Dendroremediation of trinitrotoluene (TNT). Part 2: fate of radio-labeled TNT in trees. Environ Sci Pollut Res 11:331–339

    Article  CAS  Google Scholar 

  • Scholz FG, Bucci SJ, Goldstein G, Meinzer FC, Franco AC (2002) Hydraulic redistribution of soil water by neotropical savanna trees. Tree Physiol 22:603–612

    PubMed  Google Scholar 

  • Schroth G (1999) A review of belowground interactions in agroforestry, focussing on mechanisms and management options. Agrofor Syst 43:5–34

    Article  Google Scholar 

  • Schulze B (1911) Wurzelatlas: darstellung natürlicher Wurzelbilder der Halmfrüchte in verschiedenen Stadien der Entwicklung. Verlagsbuchhandlung Paul Parey, Berlin, p 36

    Google Scholar 

  • Schulze E-D (1986) Carbon dioxide and water vapor exchange in response to drought in the atmosphere and in the soil. Annu Rev Plant Physiol 37:247–274

    Article  Google Scholar 

  • Schulze E-D, Beck E, Müller-Hohenstein K (2002) Pflanzenökologie. Spektrum Akademischer, Berlin, p 846

    Google Scholar 

  • Schwab AP, Al-Assi AA, Banks MK (1998) Adsorption of naphthalene onto plant roots. J Environ Qual 27:220–224

    Article  CAS  Google Scholar 

  • Sekiya N, Yano K (2002) Water acquisition from rainfall and groundwater by legume crops developing deep rooting systems determined with stable hydrogen isotope compositions of xylem waters. Field Crops Res 78:133–139

    Article  Google Scholar 

  • Sekiya N, Yano K (2004) Do pigeon pea and sesbania supply groundwater to intercropped maize through hydraulic lift? Hydrogen stable isotope investigation of xylem waters. Field Crops Res 86:167–173

    Article  Google Scholar 

  • Sen R (2000) Budgeting for the wood-wide web. New Phytol 145:161–165

    Article  Google Scholar 

  • Shimp JF, Tracy JC, Davis LC, Lee E, Huang W, Erickson LE et al (1993) Beneficial effects of plants in the remediation of soil and groundwater contaminated with organic materials. Environ Sci Technol 23:41–77

    CAS  Google Scholar 

  • Shumway SW (2000) Facilitative effects of a sand dune shrub on species growing beneath the shrub canopy. Oecologia 124:138–148

    Article  Google Scholar 

  • Skinner RH (2004) Hydraulic lift in humid–temperate pasture systems. Agronomy Abstracts. Paper no. 3667

  • Skinner RH, Gustine DL, Sanderson MA (2004) Growth, water relations, and nutritive value of pasture species mixtures under moisture stress. Crop Sci 44:1361–1369

    Google Scholar 

  • Smith M, Burgess SSO, Suprayogo D, Lusiana BW (2004) Uptake, partitioning, and redistribution of water by roots in mixed-species agroecosystems. In: van Noordwijk M, Cadisch G, Ong CK (eds) Below-ground interactions in tropical agroecosystems – concepts and models with multiple plant components. CABI, Oxfordshire, pp 157–170

    Google Scholar 

  • Sung K, Munster CL, Rhykerd R, Drew MC, Corapcioglu MY (2002) The use of box lysimeters with freshly contaminated soils to study the phytoremediation of recalcitrant organic contaminants. Environ Sci Technol 36:2249–2255

    Article  PubMed  CAS  Google Scholar 

  • Thiele S, Brümmer GW (1997) Kennzeichnung des Einflusses der Bodenfeuchte auf die Verfügbarkeit von PAK in belasteten Böden mittels chemischer Extraktionsverfahren. Mitt Dtsch Bodenkndl Ges 85:781–784

    Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    Article  PubMed  CAS  Google Scholar 

  • Toy TJ (1979) Potential evapotranspiration and surface-mine rehabilitation in the Powder River Basin, Wyoming and Montana. J Range Manage 32:312–317

    Article  Google Scholar 

  • UNEP (2007a) Land. In: UNEP (ed) State-and-trends of the environment: 1987–2007. Global environment outlook 4: environment for development. United Nations Environment Programme, Progress, Valletta, Malta, pp 81–114

    Google Scholar 

  • UNEP (2007b) Water. In: UNEP (ed) State-and-trends of the environment: 1987–2007. Global environment outlook 4: environment for development. United Nations Environment Programme, Progress, Valletta, Malta, pp 115–156

    Google Scholar 

  • Valladares F, Gianoli E (2007) How much ecology do we need to know to restore Mediterranean ecosystems? Restor Ecol 15:363–368

    Article  Google Scholar 

  • Van Bavel CHM, Baker JM (1985) Water transfer by plant roots from wet to dry soil. Naturwissenschaften 72:606–607

    Article  Google Scholar 

  • Van Noordwijk M, Ong CK (1999) Can the ecosystem mimic hypotheses be applied to farms in African savannahs? Agrofor Syst 45:131–158

    Article  Google Scholar 

  • VDI (2007) Biosprit. VDI Nachrichten, VDI Verlag GmbH, Düsseldorf, p 17. August 2007, 2 pp. Available in: http://www.vdi-nachrichten.com/vdi_nachrichten/aktuelle_ausgabe/akt_ausg_detail.asp?source=volltext&cat=1&id=34465

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Vetterlein D, Marschner H (1993) Use of a microtensiometer technique to study hydraulic lift in a sandy soil planted with pearl millet (Pennisetum americanum [L.] Leeke). Plant Soil 149:275–282

    Article  Google Scholar 

  • Walker BH, Noy-Meir I (1982) Aspects of stability and resilience of savanna ecosystems. In: Huntley BJ, Walker BH (eds) Ecology of tropical savannas. Springer, Berlin, pp 556–590

    Google Scholar 

  • Wan C, Sosebee RE, McMichael BL (1993) Does hydraulic lift exist in shallow-rooted species? A quantitative examination with a half-shrub Gutierrezia sarothrae. Plant Soil 153:11–17

    Article  Google Scholar 

  • Wan C, Xu W, Sosebee RE, Machado S, Archer T (2000) Hydraulic lift in drought-tolerant and -susceptible maize hybrids. Plant Soil 219:117–126

    Article  CAS  Google Scholar 

  • Warren JM, Meinzer FC, Brooks JR, Domec J-C, Coulombe R (2007) Hydraulic redistribution of soil water in two old-growth coniferous forests: quantifying patterns and controls. New Phytol 173:753–765

    Article  PubMed  Google Scholar 

  • West JB, Espeleta JF, Donovan LA (2003) Root longevity and phenology differences between two-co-occurring savanna bunchgrasses with different leaf habits. Funct Ecol 17:20–28

    Article  Google Scholar 

  • White JC, Kelsey JW, Hatzinger PB, Alexander M (1997) Factors affecting sequestration and bioavailability of phenanthrene in soils. Environ Toxicol Chem 16:2040–2045

    Article  CAS  Google Scholar 

  • Wood TG (1988) Termites and the soil environment. Biol Fertil Soils 6:228–236

    Article  Google Scholar 

  • Yoder CK, Nowak RS (1999) Hydraulic lift among native plant species in the Mojave Desert. Plant Soil 215:93–102

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Holger Liste.

Additional information

Responsible Editor: Yongguan Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liste, HH., White, J.C. Plant hydraulic lift of soil water – implications for crop production and land restoration. Plant Soil 313, 1–17 (2008). https://doi.org/10.1007/s11104-008-9696-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-008-9696-z

Keywords

Navigation