Skip to main content

Advertisement

Log in

Symbiotic N2 fixation by soybean in organic and conventional cropping systems estimated by 15N dilution and 15N natural abundance

  • Original Paper
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Nitrogen (N) is often the most limiting nutrient in organic cropping systems. N2 fixing crops present an important option to improve N supply and to maintain soil fertility. In a field experiment, we investigated whether the lower N fertilization level and higher soil microbial activity in organic than conventional systems affected symbiotic N2 fixation by soybean (Glycine max, var. Maple Arrow) growing in 2004 in plots that were since 1978 under the following systems: bio-dynamic (DYN); bio-organic (ORG); conventional with organic and mineral fertilizers (CON); CON with exclusively mineral fertilizers (MIN); non-fertilized control (NON). We estimated the percentage of legume N derived from the atmosphere (%Ndfa) by the natural abundance (NA) method. For ORG and MIN we additionally applied the enriched 15N isotope dilution method (ID) based on residual mineral and organic 15N labeled fertilizers that were applied in 2003 in microplots installed in ORG and MIN plots. These different enrichment treatments resulted in equal %Ndfa values. The %Ndfa obtained by NA for ORG and MIN was confirmed by the ID method, with similar variation. However, as plant growth was restricted by the microplot frames the NA technique provided more accurate estimates of the quantities of symbiotically fixed N2 (Nfix). At maturity of soybean the %Ndfa ranged from 24 to 54%. It decreased in the order ORG > CON > DYN > NON > MIN, with significantly lowest value for MIN. Corresponding Nfix in above ground plant material ranged from 15 to 26 g N m-2, with a decreasing trend in the order DYN = ORG > CON > MIN > NON. For all treatments, the N withdrawal by harvested grains was greater than Nfix. This shows that at the low to medium %Ndfa, soybeans did not improve the N supply to any system but removed significant amounts of soil N. High-soil N mineralization and/or low-soil P availability may have limited symbiotic N2 fixation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alves BJR, Boddey RM, Urquiaga S (2003) The success of BNF in soybean in Brazil. Plant Soil 252:1–9

    Article  CAS  Google Scholar 

  • Amundson R, Austin AT, Schuur EAG, Yoo K, Matzek V, Kendall C, Uebersax A, Brenner D, Baisden WT (2003) Global patterns of the isotopic composition of soil and plant nitrogen. Glob Biogeochem Cycle 17:1031

    Article  CAS  Google Scholar 

  • Bergersen FJ, Turner GL, Gault RR, Chase DL, Brockwell J (1985) The natural abundance of N-15 in an irrigated soybean crop and its use for the calculation of nitrogen fixation. Aust J Agric Res 36:411–423

    Article  CAS  Google Scholar 

  • Besson JM, Niggli U (1991) DOK-Versuch: vergleichende Langzeit-Untersuchungen in den drei Anbausystemen biologisch-dynamisch, organisch-biologisch und konventionell:1. Konzeption des DOK-Versuches: 1. und 2. Fruchtfolgeperiode Schweiz Landw Forsch 31:79–109

    Google Scholar 

  • Bosshard C (2007 in preparation) Nitrogen dynamics in organic and conventional cropping systems. Swiss Federal Institute of Technology Zurich, ETH Zurich

  • Carranca C, de Varennes A, Rolston DE (1999) Biological nitrogen fixation estimated by N-15 dilution, natural N-15 abundance, and N difference techniques in a subterranean clover-grass sward under Mediterranean conditions. Eur J Agron 10:81–89

    Article  Google Scholar 

  • Danso SKA, Hardarson G, Zapata F (1993) Misconceptions and practical problems in the use of 15N soil enrichment techniques for estimating N2 fixation. Plant Soil 152:25–52

    Article  Google Scholar 

  • Davidson EA, Hart SC, Shanks S, Firestone MK (1991) Measuring gross nitrogen mineralization, immobilization, and nitrification by 15N isotopic pool dilution in intact soil cores. J Soil Sci 42:335–349

    Article  CAS  Google Scholar 

  • Dirks B, Scheffer H (1930) Der Kohlensäure-bikarbonatauszug und der Wasserauszug als Grundlage zur Ermittlung der Phophorsäurebedürftigkeit der Böden. Landwirtschaftliche Jahrbücher 71:73–99

    Google Scholar 

  • Drevon JJ (1997) Nodular diagnosis. In: Morot-Gaudry J-F (ed) Nitrogen assimilation by plants. INRA, UK, pp 417–426

    Google Scholar 

  • Freyer HD, Aly AIM (1974) Nitrogen-15 variations in fertilizer nitrogen. J Environ Qual 3:405

    Article  CAS  Google Scholar 

  • Gallet A, Flisch R, Ryser JP, Nosberger J, Frossard E, Sinaj S (2003) Uptake of residual phosphate and freshly applied diammonium phosphate by Lolium perenne and Trifolium repens. J Plant Nutr Soil Sci-Z Pflanzenernahr Bodenkd 166:557–567

    Article  CAS  Google Scholar 

  • Gathumbi SM, Cadisch G, Giller KE (2002) N-15 natural abundance as a tool for assessing N-2-fixation of herbaceous, shrub and tree legumes in improved fallows. Soil Biol Biochem 34:1059–1071

    Article  CAS  Google Scholar 

  • Gerzabek MH, Haberhauer G, Kirchmann H (2001) Nitrogen distribution and N-15 natural abundances in particle size fractions of a long-term agricultural field experiment. J Plant Nutr Soil Sci-Z Pflanzenernahr Bodenkd 164:475–481

    Article  CAS  Google Scholar 

  • Giller KE (2001) Nitrogen fixation in tropical cropping systems. CABI, Wallingford, Oxon, UK

    Google Scholar 

  • Hansen B, Kristensen ES, Grant R, Hogh-Jensen H, Simmelsgaard SE, Olesen JE (2000) Nitrogen leaching from conventional versus organic farming systems—a systems modelling approach. Eur J Agron 13:65–82

    Article  CAS  Google Scholar 

  • Hartwig UA (1998) The regulation of symbiotic N2 fixation: a conceptual model of N feedback from the ecosystem to the gene expression level. Perspecitves Plant Ecol Evol Syst 1:92–120

    Article  Google Scholar 

  • Heaton THE (1986) Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere—a review. Chem Geol 59:87–102

    Article  CAS  Google Scholar 

  • Herridge DF, Brockwell J (1988) Contributions of fixed nitrogen and soil nitrate to the nitrogen economy of irrigated soybean. Soil Biol Biochem 20:711–717

    Article  CAS  Google Scholar 

  • Högberg P (1997) 15N natural abundance in soil-plant systems. New Phytol 137:179–203

    Article  Google Scholar 

  • Hopkins DW, Wheatley RE, Robinson D (1998) Stable isotope studies of soil nitrogen. In: Griffiths H (ed) Stable isotopes: integration of biological, ecological and geochemical processes. BIOS Scientific Publisher Ltd., Oxford, pp 75–88

    Google Scholar 

  • Huss-Danell K, Chaia E (2005) Use of different plant parts to study N-2 fixation with N-15 techniques in field-grown red clover (Trifolium pratense). Physiol Plant 125:21–30

    Article  CAS  Google Scholar 

  • KIP (1999) Richtlinien für den ökologischen Leistungsnachweis (ÖLN). Koordinationsgruppe Richtlinien Deutschschweiz, Landwirtschaftliche Beratungszentrale Lindau

  • Kirchmann H, Bergstrom L (2001) Do organic farming practices reduce nitrate leaching? Commun Soil Sci Plant Anal 32:997–1028

    Article  CAS  Google Scholar 

  • Langmeier M, Frossard E, Kreuzer M, Mäder P, Dubois D, Oberson A (2002) Nitrogen fertilizer value of cattle manure applied on soils originating from organic and conventional farming systems. Agronomie 22:789–800

    Article  Google Scholar 

  • Mäder P, Fließbach A, Dubois D, Gunst L, Fried P, Niggli U (2002) Soil fertility and biodiversity in organic farming. Science 296:1694–1697

    Article  PubMed  Google Scholar 

  • McAuliffe C, Chamblee DS, Uribe-Arango H, Woodhouse WW (1958) Influence of inorganic nitrogen on nitrogen fixation by legumes as revealed by 15N. Agron J 50:334–337

    Article  CAS  Google Scholar 

  • McNeill AM, Pilbeam CJ, Harris HC, Swift RS (1998) Use of residual fertiliser 15N in soil for isotope dilution estimates of N2 fixation by grain legumes. Aust J Agric Res 49:821–828

    Article  Google Scholar 

  • Okito A, Alves B, Urquiaga S, Boddey RM (2004) Isotopic fractionation during N-2 fixation by four tropical legumes. Soil Biol Biochem 36:1179–1190

    Article  CAS  Google Scholar 

  • Reiter K, Schmidtke K, Rauber R (2002) The influence of long-term tillage systems on symbiotic N2 fixation of pea (Pisum sativum L.) and red clover (Trifolium pratense L.). Plant Soil 238:41–55

    Article  CAS  Google Scholar 

  • Reuter DJ, Robinson JB (1986) Plant analysis: an interpretation manual. Inkata Press, Melbourne, 218pp

  • Schwenke GD, Peoples MB, Turner GL, Herridge DF (1998) Does nitrogen fixation of commercial, dryland chickpea and faba bean crops in north-west New South Wales maintain or enhance soil nitrogen? Aust J Exp Agric 38:61–70

    Article  Google Scholar 

  • Shearer G, Kohl DH (1986) N2 fixation in field settings: estimations based on natural abundance. Aust J Plant Physiol 13:699–744

    CAS  Google Scholar 

  • Siegrist S, Schaub D, Pfiffner L, Mäder P (1998) Does organic agriculture reduce soil erodibility? The results of a long-term field study on loess in Switzerland. Agric Ecosyst Environ 69:253–264

    Article  Google Scholar 

  • Sorensen P, Jensen ES, Nielsen NE (1994) Labelling of animal manure nitrogen with 15N. Plant Soil 162:31–37

    Article  CAS  Google Scholar 

  • Stockdale EA, Lampkin NH, Hovi M, Keatinge R, Lennartsson EKM, Macdonald DW, Padel S, Tattersall FH, Wolfe MS, Watson CA (2001) Agronomic and environmental implications of organic farming systems. Adv Agron 70:261–327

    Article  Google Scholar 

  • Thomsen IK, Schjønning P, Christensen BT (2003) Mineralisation of 15N-labelled sheep manure in soils of different texture and water contents. Biol Fertil Soils 37:295–301

    CAS  Google Scholar 

  • Unkovich MJ, Pate JS (2000) An appraisal of recent field measurements of symbiotic N-2 fixation by annual legumes. Field Crop Res 65:211–228

    Article  Google Scholar 

  • Unkovich MJ, Pate JS, Sanford P, Armstrong EL (1994) Potential precision of the d15N natural abundance method in the field estimates of nitrogen fixation by crop and pasture legumes in south-west Australia. Aust J Agric Res 45:119–132

    Article  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707

    Article  CAS  Google Scholar 

  • Vinther FP, Jensen ES (2000) Estimating legume N2 fixation in grass-clover mixtures of a grazed organic cropping system using two 15N methods. Agric Ecosyst Environ 78:139–147

    Article  CAS  Google Scholar 

  • Walther U, Ryser J-P, Flisch R (2001) Grundlagen für die Düngung im Acker- und Futterbau 2001. Agrarforschung 8:1–80

    Google Scholar 

  • Werner RA, Schmidt HL (2002) The in vivo nitrogen isotope discrimination among organic plant compounds. Phytochemistry 61:465–484

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge W. Jossi (FAL) and R. Frei (FiBL) for their help in the field work and L. Gunst (FAL) for providing data records on the field experiment. We are grateful to M. Stocki (University of Saskatchewan, Saskatoon) for mass spectrometral analyses and to H. -R. Roth (Seminar for Statistics, ETH) for advice in statistics. Finally, we warmly thank R. Ruh, T. Flura, T. Rösch, and S. Douxchamps (all from Group Plant Nutrition, ETH) for assistance in the field, the laboratories and the greenhouse.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Oberson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oberson, A., Nanzer, S., Bosshard, C. et al. Symbiotic N2 fixation by soybean in organic and conventional cropping systems estimated by 15N dilution and 15N natural abundance. Plant Soil 290, 69–83 (2007). https://doi.org/10.1007/s11104-006-9122-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-006-9122-3

Keywords

Navigation