Skip to main content
Log in

Interaction between the transcription factor AtTIFY4B and begomovirus AL2 protein impacts pathogenicity

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The begomovirus AL2 protein is a transcriptional activator, a silencing suppressor, and inhibitor of basal defense. AL2 forms a complex at the CP promoter, through interaction with a plant-specific DNA-binding protein, Arabidopsis PEAPOD2 (also known as TIFY4B). AtTIFY4B has three domains (PPD, TIFY and CCT_2) conserved between homologs from different plant species. We confirmed that the AL2 protein from Tomato golden mosaic virus and Cabbage leaf curl virus interacts with TIFY4B from Arabidopsis, tomato and Nicotiana benthamiana in the nucleus of plant cells. Bimolecular Fluorescence Complementation demonstrated that the interaction involves both the TIFY and CCT_2 domains. Surprisingly, amino acids 84–150 can prevent AtTIFY4B from localizing to the nucleus, and interaction with AL2 results in some of the protein re-entering the nucleus. When AtTIFY4B is over-expressed, we observe an increase in mean latent period, where systemic symptoms are detected on average, 4 days later than in mock treated plants. This appears to be a consequence of reduced viral DNA titers, possibly related to the role of TIFY4B in cell cycle arrest. Our results point to a potential role for TIFY4B in host defense against geminiviruses. Expression of TIFY4B in N. benthamiana increases in response to geminivirus infection, which would result in suppression of proliferation, reducing viral replication. Geminiviruses may counter this defense response through an interaction between AL2 and TIFY4B, which would inhibit TIY4B function. The consequence of this inhibition would be failure to arrest the cell cycle, providing an environment conducive for geminivirus replication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aoyama T, Chua N-H (1997) A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant J 11(3):605–612

    Article  CAS  PubMed  Google Scholar 

  • Ascencio-Ibañez JT, Sozzani R, Lee T-J, Chu T-M, Wolfinger RD, Cellab R, Hanley-Bowdoin L (2008) Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiol 148:436–454

    Article  PubMed Central  PubMed  Google Scholar 

  • Bai Y, Meng Y, Huang D, Qi Y, Chen M (2010) Origin and evolutionary analysis of the plant-specific TIFY transcription factor family. Genomics 98:128–136

    Google Scholar 

  • Baliji S, Black MC, French R, Stenger DC, Sunter G (2004) Spinach curly top virus: a new curtovirus species from Southwest Texas displaying incongruent gene phylogenies that suggest a history of recombination among curtoviruses. Phytopath 94(7):772–779

    CAS  Google Scholar 

  • Baliji S, Lacatus G, Sunter G (2010) The interaction between geminivirus pathogenicity proteins and adenosine kinase leads to increased expression of primary cytokinin responsive genes. Virology 402:238–247

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berger MR, Sunter G (2013) Identification of sequences required for AL2-mediated activation of the Tomato golden mosaic virus-yellow vein BR1 promoter. J Gen Virol 94(6):1398–1406

    CAS  PubMed  Google Scholar 

  • Biegert A, Mayer C, Remmert M, Soding J, Lupas AN (2006) The MPI bioinformatics toolkit for protein sequence analysis. Nucleic Acids Res 34(Web Server issue):W335–W339

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bisaro DM (1996) Geminivirus replication. In: DePamphilis M (ed) DNA replication in Eukaryotic cells. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 833–854

    Google Scholar 

  • Chung HS, Niu Y, Browse J, Howe GA (2009) Top hits in contemporary JAZ: an update on jasmonate signaling. Phytochemistry 70:1547–1559

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chung HY, Lacatus G, Sunter G (2014) Geminivirus AL2 protein induces expression of, and interacts with, a calmodulin-like gene, an endogenous regulator of gene silencing. Virology 460–461:108–118

    Google Scholar 

  • Gardiner WE, Sunter G, Brand L, Elmer JS, Rogers SG, Bisaro DM (1988) Genetic analysis of Tomato golden mosaic virus: the coat protein is not required for systemic spread or symptom development. EMBO J 7:899–904

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gutierrez C (1999) Geminivirus DNA replication. Cell Mol Life Sci 56:313–329

    CAS  PubMed  Google Scholar 

  • Hanley-Bowdoin L, Settlage S, Orozco BM, Nagar S, Robertson D (1999) Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation. Crit Rev Plant Sci 18:71–106

    CAS  Google Scholar 

  • Hartitz MD, Sunter G, Bisaro DM (1999) The geminivirus transactivator (TrAP) is a zinc-binding phosphoprotein with an acidic activation domain. Virology 263:1–14

    CAS  PubMed  Google Scholar 

  • Horsch RB, Klee HJ (1986) Rapid assay of foreign gene expression in leaf discs transformed by Agrobacterium tumefaciens: role of the T-DNA borders in the transfer process. Proc Natl Acad Sci USA 83:4428–4432

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jeske H, Lutgemeier M, Preisz W (2001) DNA forms indicate rolling circle and recombination-dependent replication of Abutilon mosaic virus. EMBO J 20(21):6158–6167

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johansen LK, Carrington JC (2001) Silencing on the spot. Induction and suppression of RNA silencing in the Agrobacterium-mediated transient expression system. Plant Physiol 126(3):930–938

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lacatus G, Sunter G (2008) Functional analysis of bipartite begomovirus coat protein promoter sequences. Virology 376:79–89

    CAS  PubMed  Google Scholar 

  • Lacatus G, Sunter G (2009) The Arabidopsis PEAPOD2 transcription factor interacts with geminivirus AL2 protein and the coat protein promoter. Virology 392:196–202

    CAS  PubMed  Google Scholar 

  • Martin K, Kopperud K, Chakrabarty R, Banerjee R, Brooks R, Goodin MM (2009) Transient expression in Nicotiana benthamiana fluorescent marker lines provides enhanced definition of protein localization, movement and interactions in planta. Plant J 59(1):150–162

    CAS  PubMed  Google Scholar 

  • Noueiry AO, Lucas WJ, Gilbertson RL (1994) Two proteins of a plant DNA virus coordinate nuclear and plasmodesmal transport. Cell 76:925–932

    CAS  PubMed  Google Scholar 

  • Papadopoulos JS, Agarwala R (2007) COBALT: constraint-based alignment tool for multiple protein sequences. Bioinformatics 23(9):1073–1079

    CAS  PubMed  Google Scholar 

  • Pauwels L, Goossensa A (2011) The JAZ proteins: a crucial interface in the jasmonate signaling cascade. Plant Cell 23:3089–3100

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pauwels L, Barbero GF, Geerinck J, Tilleman S, Grunewald W, Perez AC, Chico JM, Bossche RV, Sewell J, Gil E, Garcia-Casado G, Witters E, Inze D, Long JA, De Jaeger G, Solano R, Goossens A (2010) NINJA connects the co-repressor TOPLESS to jasmonate signalling. Nature 464(7289):788–791

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rao K, Sunter G (2012) Sequences within the Spinach curly top virus virion sense promoter are necessary for vascular-specific expression of virion sense genes. Virology 432:10–19

    CAS  PubMed  Google Scholar 

  • Rogers SG, Horsch RB, Fraley RT (1986) Gene transfer in plants: production of transformed plants using Ti plasmid vectors. In: Weissbach A, Weissbach H (eds) Methods in enzymology, vol 118. Academic Press, New York, pp 627–640

    Google Scholar 

  • Rogers SG, Klee HJ, Horsch RB, Fraley RT (1987) Improved vectors for plant transformation: expression cassette vectors and new selectable markers. Methods Enzymol 153:253–277

    CAS  Google Scholar 

  • Sanderfoot AA, Ingham DJ, Lazarowitz SG (1996) A viral movement protein as a nuclear shuttle: the geminivirus BR1 movement protein contains domains essential for interaction with BL1 and nuclear localization. Plant Physiol 110:23–33

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shung C-Y, Sunter J, Sirasanagandla SS, Sunter G (2006) Distinct viral sequence elements are necessary for expression of Tomato golden mosaic virus complementary sense transcripts that direct AL2 and AL3 gene expression. Mol Plant Microbe Interact 19:1394–1405  

  • Sunter G, Bisaro DM (1991) Transactivation in a geminivirus: AL2 gene product is needed for coat protein expression. Virology 180:416–419

    CAS  PubMed  Google Scholar 

  • Sunter G, Bisaro DM (1992) Transactivation of geminivirus AR1 and BR1 gene expression by the viral AL2 gene product occurs at the level of transcription. Plant Cell 4:1321–1331

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sunter G, Bisaro DM (1997) Regulation of a geminivirus coat protein promoter by AL2 protein (TrAP): evidence for activation and derepression mechanisms. Virology 232:269–280

    CAS  PubMed  Google Scholar 

  • Sunter G, Bisaro DM (2003) Identification of a minimal sequence required for activation of the Tomato golden mosaic virus coat protein promoter in protoplasts. Virology 305(2):452–462

    CAS  PubMed  Google Scholar 

  • Sunter G, Hartitz MD, Hormuzdi SG, Brough CL, Bisaro DM (1990) Genetic analysis of Tomato golden mosaic virus. ORF AL2 is required for coat protein accumulation while ORF AL3 is necessary for efficient DNA replication. Virology 179:69–77

    CAS  PubMed  Google Scholar 

  • Sunter G, Stenger DC, Bisaro DM (1994) Heterologous complementation by geminivirus AL2 and AL3 genes. Virology 203:203–210

    CAS  PubMed  Google Scholar 

  • Sunter G, Sunter JL, Bisaro DM (2001) Plants expressing Tomato golden mosaic virus AL2 or Beet curly top virus L2 transgenes show enhanced susceptibility to infection by DNA and RNA viruses. Virology 285:59–70

    CAS  PubMed  Google Scholar 

  • Vanholme B, Grunewald W, Bateman A, Kohchi T, Gheysen G (2007) The TIFY family previously known as ZIM. Trends Plant Sci 12(6):239–244

    CAS  PubMed  Google Scholar 

  • Wang H, Buckley KJ, Yang X, Buchmann RC, Bisaro DM (2005) Adenosine kinase inhibition and suppression of RNA silencing by geminivirus AL2 and L2 proteins. J Virol 79:7410–7418

  • White DWR (2006) PEAPOD regulates lamina size and curvature in Arabidopsis. Proc Natl Acad Sci USA 103(35):13238–13243

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang X, Baliji S, Buchmann RC, Wang H, Lindbo JA, Sunter G, Bisaro DM (2007) Functional modulation of the geminivirus AL2 transcription factor and silencing suppressor by self-interaction. J Virol 81:11972–11981

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang J, Yun J, Shang Z, Zhang X, Pan B (2009) Design and optimization of a linker for fusion protein construction. Prog Nat Sci 19:1197–1200

    CAS  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant Number IOS-0948669. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. We thank Janet Sunter for maintenance and generation of N. benthamiana plants and microscopy.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garry Sunter.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2688 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, H.Y., Sunter, G. Interaction between the transcription factor AtTIFY4B and begomovirus AL2 protein impacts pathogenicity. Plant Mol Biol 86, 185–200 (2014). https://doi.org/10.1007/s11103-014-0222-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-014-0222-9

Keywords

Navigation