Skip to main content
Log in

A novel chloroplast localized Rab GTPase protein CPRabA5e is involved in stress, development, thylakoid biogenesis and vesicle transport in Arabidopsis

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

A novel Rab GTPase protein in Arabidopsis thaliana, CPRabA5e (CP = chloroplast localized) is located in chloroplasts and has a role in transport. Transient expression of CPRabA5e:EGFP fusion protein in tobacco (Nicotiana tabacum) leaves, and immunoblotting using Arabidopsis showed localization of CPRabA5e in chloroplasts (stroma and thylakoids). Ypt31/32 in the yeast Saccharomyces cerevisiae are involved in regulating vesicle transport, and CPRabA5e a close homolog of Ypt31/32, restores the growth of the ypt31Δ ypt32 ts mutant at 37 °C in yeast complementation. Knockout mutants of CPRabA5e displayed delayed seed germination and growth arrest during oxidative stress. Ultrastructural studies revealed that after preincubation at 4 °C mutant chloroplasts contained larger plastoglobules, lower grana, and more vesicles close to the envelopes compared to wild type, and vesicle formation being enhanced under oxidative stress. This indicated altered thylakoid development and organization of the mutants. A yeast-two-hybrid screen with CPRabA5e as bait revealed 13 interacting partner proteins, mainly located in thylakoids and plastoglobules. These proteins are known or predicted to be involved in development, stress responses, and photosynthesis related processes, consistent with the stress phenotypes observed. The results observed suggest a role of CPRabA5e in transport to and from thylakoids, similar to cytosolic Rab proteins involved in vesicle transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ådén J, Wallgren M, Storm P, Weise CF, Christiansen A, Schröder WP, Funk C, Wolf-Watz M (2011) Extraordinary μs–ms backbone dynamics in Arabidopsis thaliana peroxiredoxin Q. Biochim Biophy Acta (BBA) - Proteins Proteomics 1814(12):1880–1890

    Google Scholar 

  • Agarwal P, Reddy M, Sopory S, Agarwal PK (2009) Plant rabs: characterization, functional diversity, and role in stress tolerance. Plant Mol Biol Report 27(4):417–430

    Article  CAS  Google Scholar 

  • Ali B, Seabra M (2005) Targeting of Rab GTPases to cellular membranes. Biochem Soc Trans 33:652–656

    Article  CAS  PubMed  Google Scholar 

  • Andersson MX, Sandelius AS (2004) A chloroplast-localized vesicular transport system: a bio-informatics approach. BMC Genomics 5(1):40

    Article  PubMed Central  PubMed  Google Scholar 

  • Angers CG, Merz AJ (2011) New links between vesicle coats and Rab-mediated vesicle targeting. Semin Cell Dev Biol 22(1):18–26

    Google Scholar 

  • Aronsson H, Jarvis P (2002) A simple method for isolating import-competent Arabidopsis chloroplasts. FEBS Lett 529(2):215–220

    Article  CAS  PubMed  Google Scholar 

  • Aronsson H, Jarvis RP (2011) Rapid isolation of Arabidopsis chloro­plasts and their use for in vitro protein import assays. In: Jarvis RP (ed) Chloroplast research in Arabidopsis : methods and protocols Volume I. Methods in molecular biology, vol 774. Humana Press, pp 281-305

  • Aronsson H, Combe J, Jarvis P (2003) Unusual nucleotide-binding properties of the chloroplast protein import receptor, atToc33. FEBS Lett 544(1):79–85

    Article  CAS  PubMed  Google Scholar 

  • Austin JR, Frost E, Vidi PA, Kessler F, Staehelin LA (2006) Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes. Plant Cell 18(7):1693–1703

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Benli M, Döring F, Robinson D, Yang X, Gallwitz D (1996) Two GTPase isoforms, Ypt31p and Ypt32p, are essential for Golgi function in yeast. EMBO J 15(23):6460–6475

    CAS  PubMed Central  PubMed  Google Scholar 

  • Block MA, Tewari AK, Albrieux C, Marechal E, Joyard J (2002) The plant S-adenosyl-L-methionine: Mg-protoporphyrin IX methyltransferase is located in both envelope and thylakoid chloroplast membranes. Eur J Biochem 269(1):240–248

    Article  CAS  PubMed  Google Scholar 

  • Borg S, Poulsen C (1994) Molecular analysis of two Ypt/Rab-related sequences isolated from soybean (Glycine max) DNA libraries. Plant Mol Biol 26(1):175–187

    Article  CAS  PubMed  Google Scholar 

  • Brandizzi F, Snapp EL, Roberts AG, Lippincott-Schwartz J, Hawes C (2002) Membrane protein transport between the endoplasmic reticulum and the Golgi in tobacco leaves is energy dependent but cytoskeleton independent: evidence from selective photobleaching. Plant Cell 14(6):1293–1309

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen SH, Shah AH, Segev N (2011) Ypt31/32 GTPases and their F-Box effector Rcy1 regulate ubiquitination of recycling proteins. Cell Logist 1(1):21–31

    Article  PubMed Central  PubMed  Google Scholar 

  • Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31(13):3497–3500

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chow CM, Neto H, Foucart C, Moore I (2008) Rab-A2 and Rab-A3 GTPases define a trans-Golgi endosomal membrane domain in Arabidopsis that contributes substantially to the cell plate. Plant Cell 20(1):101–123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Damkjær JT, Kereïche S, Johnson MP, Kovacs L, Kiss AZ, Boekema EJ, Ruban AV, Horton P, Jansson S (2009) The photosystem II light-harvesting protein Lhcb3 affects the macrostructure of photosystem II and the rate of state transitions in Arabidopsis. Plant Cell 21(10):3245–3256

    Article  PubMed Central  PubMed  Google Scholar 

  • Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2(4):953–971

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Google Scholar 

  • Ferro M, Brugière S, Salvi D, Seigneurin-Berny D, Moyet L, Ramus C, Miras S, Mellal M, Le Gall S, Kieffer-Jaquinod S (2010) AT_CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins. Mol Cell Proteomics 9(6):1063–1084

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Friso G, Giacomelli L, Ytterberg AJ, Peltier JB, Rudella A, Sun Q, van Wijk KJ (2004) In-depth analysis of the thylakoid membrane proteome of Arabidopsis thaliana chloroplasts: new proteins, new functions, and a plastid proteome database. Plant Cell 16(2):478–499

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Furuta N, Fujimura-Kamada K, Saito K, Yamamoto T, Tanaka K (2007) Endocytic recycling in yeast is regulated by putative phospholipid translocases and the Ypt31p/32p–Rcy1p pathway. Mol Biol Cell 18(1):295–312

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garcia C, Khan NZ, Nannmark U, Aronsson H (2010) The chloroplast protein CPSAR1, dually localized in the stroma and the inner envelope membrane, is involved in thylakoid biogenesis. Plant J 63(1):73–85. doi:10.1111/j.1365-313X.2010.04225.x

    CAS  PubMed  Google Scholar 

  • Gargano D, Maple-Grødem J, Reisinger V, Eichacker L, Møller S (2013) Analysis of the chloroplast proteome in arc mutants and identification of novel protein components associated with FtsZ2. Plant Mol Biol 81:235–244

    Article  CAS  PubMed  Google Scholar 

  • Gietz RD, Schiestl RH (1995) Transforming yeast with DNA. Methods Mol Cell Biol 5:255–269

    Google Scholar 

  • Gonçalves S, Cairney J, Rodríguez MP, Cánovas F, Oliveira M, Miguel C (2007) PpRab1, a Rab GTPase from maritime pine is differentially expressed during embryogenesis. Mol Genet Genomics 278(3):273–282

    Article  PubMed  Google Scholar 

  • Goulas E, Schubert M, Kieselbach T, Kleczkowski LA, Gardeström P, Schröder W, Hurry V (2006) The chloroplast lumen and stromal proteomes of Arabidopsis thaliana show differential sensitivity to short-and long-term exposure to low temperature. Plant J 47(5):720–734

    Article  CAS  PubMed  Google Scholar 

  • Grennan AK (2006) Genevestigator. Facilitating web-based gene-expression analysis. Plant Physiol 141(4):1164–1166

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, Widmayer P, Gruissem W, Zimmermann P (2008) Genevestigator V3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinformatics 2008:5

    Google Scholar 

  • Inaba T, Alvarez-Huerta M, Li M, Bauer J, Ewers C, Kessler F, Schnell DJ (2005) Arabidopsis Tic110 is essential for the assembly and function of the protein import machinery of plastids. Plant Cell 17(5):1482–1496

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Izumi M, Tsunoda H, Suzuki Y, Makino A, Ishida H (2012) RBCS1A and RBCS3B, two major members within the Arabidopsis RBCS multigene family, function to yield sufficient Rubisco content for leaf photosynthetic capacity. J Exp Bot 63(5):2159–2170

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jedd G, Mulholland J, Segev N (1997) Two new Ypt GTPases are required for exit from the yeast trans-Golgi compartment. J Cell Biol 137(3):563–580

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jones AME, Thomas V, Bennett MH, Mansfield J, Grant M (2006) Modifications to the Arabidopsis defense proteome occur prior to significant transcriptional change in response to inoculation with Pseudomonas syringae. Plant Physiol 142(4):1603–1620

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Karim S, Holmström KO, Mandal A, Dahl P, Hohmann S, Brader G, Palva ET, Pirhonen M (2007) AtPTR3, a wound-induced peptide transporter needed for defence against virulent bacterial pathogens in Arabidopsis. Planta 225(6):1431–1445

    Article  CAS  PubMed  Google Scholar 

  • Kessler F, Vidi PA (2007) Plastoglobule lipid bodies: their functions in chloroplasts and their potential for applications. Green Gene Technol 107:153–172

    Article  CAS  Google Scholar 

  • Khan NZ, Lindquist E, Aronsson H (2013) New putative chloroplast vesicle transport components and cargo proteins revealed using a bioinformatics approach: an Arabidopsis model. PLoS One 12:e59898

    Article  Google Scholar 

  • Lanzetta PA, Alvarez LJ, Reinach PS, Candia OA (1979) An improved assay for nanomole amounts of inorganic phosphate. Anal Biochem 100(1):95–97

    Article  CAS  PubMed  Google Scholar 

  • Leonard SE, Reddie KG, Carroll KS (2009) Mining the thiol proteome for sulfenic acid modifications reveals new targets for oxidation in cells. ACS Chem Biol 4(9):783–799

    Article  CAS  PubMed  Google Scholar 

  • Leung KF, Baron R, Seabra MC (2006) Thematic review series: lipid posttranslational modifications. geranylgeranylation of Rab GTPases. J Lipid Res 47(3):467–475

    Article  CAS  PubMed  Google Scholar 

  • Li X, Valencia A, Sapp E, Masso N, Alexander J, Reeves P, Kegel KB, Aronin N, DiFiglia M (2010) Aberrant Rab11-dependent trafficking of the neuronal glutamate transporter EAAC1 causes oxidative stress and cell death in Huntington’s disease. J Neurosci 30(13):4552–4561

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lundquist PK, Poliakov A, Bhuiyan NH, Zybailov B, Sun Q, van Wijk KJ (2012) The functional network of the Arabidopsis plastoglobule proteome based on quantitative proteomics and genome-wide coexpression analysis. Plant Physiol 158(3):1172–1192

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matsui M, Sasamoto S, Kunieda T, Nomura N, Ishizaki R (1989) Cloning of ara, a putative Arabidopsis thaliana gene homologous to the ras-related gene family. Gene 76(2):313–319

    Article  CAS  PubMed  Google Scholar 

  • Mazel A, Leshem Y, Tiwari BS, Levine A (2004) Induction of salt and osmotic stress tolerance by overexpression of an intracellular vesicle trafficking protein AtRab7 (AtRabG3e). Plant Physiol 134(1):118–128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Morré DJ, Selldén G, Sundqvist C, Sandelius AS (1991) Stromal low temperature compartment derived from the inner membrane of the chloroplast envelope. Plant Physiol 97(4):1558–1564

    Article  PubMed Central  PubMed  Google Scholar 

  • Narsai R, Law SR, Carrie C, Xu L, Whelan J (2011) In-depth temporal transcriptome profiling reveals a crucial developmental switch with roles for RNA processing and organelle metabolism that are essential for germination in Arabidopsis. Plant Physiol 157(3):1342–1362. doi:10.1104/pp.111.183129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, Oxford

    Google Scholar 

  • Nielsen E, Cheung AY, Ueda T (2008) The regulatory RAB and ARF GTPases for vesicular trafficking. Plant Physiol 147(4):1516–1526

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Novick P, Zerial M (1997) The diversity of Rab proteins in vesicle transport. Curr Opin Cell Biol 9(4):496–504

    Article  CAS  PubMed  Google Scholar 

  • Peltier JB, Ytterberg AJ, Sun Q, van Wijk KJ (2004) New functions of the thylakoid membrane proteome of Arabidopsis thaliana revealed by a simple, fast, and versatile fractionation strategy. J Biol Chem 279(47):49367–49383

    Article  CAS  PubMed  Google Scholar 

  • Pereira-Leal JB, Seabra MC (2001) Evolution of the Rab family of small GTP-binding proteins. J Mol Biol 313(4):889–901

    Article  CAS  PubMed  Google Scholar 

  • Petersson UA, Kieselbach T, García-Cerdán JG, Schröder WP (2006) The Prx Q protein of Arabidopsis thaliana is a member of the luminal chloroplast proteome. FEBS Lett 580(26):6055–6061

    Article  CAS  PubMed  Google Scholar 

  • Pfeffer SR (2001) Rab GTPases: specifying and deciphering organelle identity and function. Trends Cell Biol 11(12):487–491

    Article  CAS  PubMed  Google Scholar 

  • Pfeffer S (2005) A model for Rab GTPase localization. Biochem Soc Trans 33:627–630

    Article  CAS  PubMed  Google Scholar 

  • Pfeffer SR (2012) Rab GTPase localization and Rab cascades in Golgi transport. Biochem Soc Trans 40(6):1373–1377

    Article  CAS  PubMed  Google Scholar 

  • Pfeffer S, Aivazian D (2004) Targeting Rab GTPases to distinct membrane compartments. Nat Rev Mol Cell Biol 5(11):886–896

    Article  CAS  PubMed  Google Scholar 

  • Popoff V, Adolf F, Brügger B, Wieland F (2011) COPI budding within the Golgi stack. Cold Spring Harb Perspect Biol 3(11):a005231

    Google Scholar 

  • Porra R, Thompson W, Kriedemann P (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta (BBA) - Bioenerg 975(3):384–394

    Google Scholar 

  • Presley JF, Cole NB, Schroer TA, Hirschberg K, Zaal KJM, Lippincott-Schwartz J (1997) ER-to-Golgi transport visualized in living cells. Nature 389(6646):81–84

    Article  CAS  PubMed  Google Scholar 

  • Rapala-Kozik M, Wolak N, Kujda M, Banas AK (2012) The upregulation of thiamine (vitamin B1) biosynthesis in Arabidopsis thaliana seedlings under salt and osmotic stress conditions is mediated by abscisic acid at the early stages of this stress response. BMC Plant Biol 12(1):2

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rosenblum JS, Pemberton LF, Bonifaci N, Blobel G (1998) Nuclear import and the evolution of a multifunctional RNA-binding protein. J Cell Biol 143(4):887–899

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rutherford S, Moore I (2002) The Arabidopsis Rab GTPase family: another enigma variation. Curr Opin Plant Biol 5(6):518–528

    Article  CAS  PubMed  Google Scholar 

  • Sacher M, Kim YG, Lavie A, Oh BH, Segev N (2008) The TRAPP complex: insights into its architecture and function. Traffic 9(12):2032–2042

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    CAS  PubMed  Google Scholar 

  • Saxena SK, Kaur S (2006) Regulation of epithelial ion channels by Rab GTPases. Biochem Biophys Res Commun 351(3):582–587

    Article  CAS  PubMed  Google Scholar 

  • Schwartz SL, Cao C, Pylypenko O, Rak A, Wandinger-Ness A (2007) Rab GTPases at a glance. J Cell Sci 120(22):3905–3910

    Article  CAS  PubMed  Google Scholar 

  • Segev N (2001) Ypt and Rab GTPases: insight into functions through novel interactions. Curr Opin Cell Biol 13(4):500–511

    Article  CAS  PubMed  Google Scholar 

  • Sjögren LLE, MacDonald TM, Sutinen S, Clarke AK (2004) Inactivation of the clpC1 gene encoding a chloroplast Hsp100 molecular chaperone causes growth retardation, leaf chlorosis, lower photosynthetic activity, and a specific reduction in photosystem content. Plant Physiol 136(4):4114–4126

    Article  PubMed Central  PubMed  Google Scholar 

  • Solymosi K, Bertrand M (2012) Soil metals, chloroplasts, and secure crop production: a review. Agron Sustain Dev 32(1):245–272

    Article  CAS  Google Scholar 

  • Solymosi K, Bóka K, Böddi B (2006) Transient etiolation: protochlorophyll(ide) and chlorophyll forms in differentiating plastids of closed and breaking leaf buds of horse chestnut (Aesculus hippocastanum). Tree Physiol 26(8):1087–1096

    Article  CAS  PubMed  Google Scholar 

  • Stefano G, Renna L, Chatre L, Hanton SL, Moreau P, Hawes C, Brandizzi F (2006) In tobacco leaf epidermal cells, the integrity of protein export from the endoplasmic reticulum and of ER export sites depends on active COPI machinery. Plant J 46(1):95–110

    Article  CAS  PubMed  Google Scholar 

  • Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10(8):513–525

    Article  CAS  PubMed  Google Scholar 

  • Takai Y, Sasaki T, Matozaki T (2001) Small GTP-binding proteins. Physiol Rev 81(1):153–208

    CAS  PubMed  Google Scholar 

  • Takeuchi M, Ueda T, Yahara N, Nakano A (2002) Arf1 GTPase plays roles in the protein traffic between the endoplasmic reticulum and the Golgi apparatus in tobacco and Arabidopsis cultured cells. Plant J 31(4):499–515

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tanz SK, Kilian J, Johnsson C, Apel K, Small I, Harter K, Wanke D, Pogson B, Albrecht V (2012) The SCO2 protein disulphide isomerase is required for thylakoid biogenesis and interacts with LCHB1 chlorophyll a/b binding proteins which affects chlorophyll biosynthesis in Arabidopsis seedlings. Plant J 69:743–754

    Article  CAS  PubMed  Google Scholar 

  • Tisdale EJ (2001) Glyceraldehyde-3-phosphate dehydrogenase is required for vesicular transport in the early secretory pathway. J Biol Chem 276(4):2480–2486

    Article  CAS  PubMed  Google Scholar 

  • Tsujimoto Y, Takase D, Okano H, Tomari N, Watanabe K, Matsui H (2012) Functional roles of YPT31 and YPT32 in clotrimazole resistance of Saccharomyces cerevisiae through effects on vacuoles and ATP-binding cassette transporter (s). J Biosci Bioeng 115:4–11

    Article  PubMed  Google Scholar 

  • Tunc-Ozdemir M, Miller G, Song L, Kim J, Sodek A, Koussevitzky S, Misra AN, Mittler R, Shintani D (2009) Thiamin confers enhanced tolerance to oxidative stress in Arabidopsis. Plant Physiol 151(1):421–432

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vernoud V, Horton AC, Yang Z, Nielsen E (2003) Analysis of the small GTPase gene superfamily of Arabidopsis. Plant Physiol 131(3):1191–1208

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vidi PA, Kanwischer M, Baginsky S, Austin JR, Csucs G, Dörmann P, Kessler F, Bréhélin C (2006) Tocopherol cyclase (VTE1) localization and vitamin E accumulation in chloroplast plastoglobule lipoprotein particles. J Biol Chem 281(16):11225–11234

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Sullivan RW, Kight A, Henry RL, Huang J, Jones AM, Korth KL (2004) Deletion of the chloroplast-localized Thylakoid formation1 gene product in Arabidopsis leads to deficient thylakoid formation and variegated leaves. Plant Physiol 136(3):3594–3604

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Westphal S, Soll J, Vothknecht UC (2001) A vesicle transport system inside chloroplasts. FEBS Lett 506(3):257–261

    Article  CAS  PubMed  Google Scholar 

  • Whyte JRC, Munro S (2002) Vesicle tethering complexes in membrane traffic. J Cell Sci 115(13):2627–2637

    CAS  PubMed  Google Scholar 

  • Wittinghofer A, Vetter IR (2011) Structure–function relationships of the G domain, a canonical switch motif. Annu Rev Biochem 80:943–971

    Article  CAS  PubMed  Google Scholar 

  • Yahara N, Ueda T, Sato K, Nakano A (2001) Multiple roles of Arf1 GTPase in the yeast exocytic and endocytic pathways. Mol Biol Cell 12(1):221–238

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ytterberg AJ, Peltier JB, Van Wijk KJ (2006) Protein profiling of plastoglobules in chloroplasts and chromoplasts. A surprising site for differential accumulation of metabolic enzymes. Plant Physiol 140(3):984–997

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang J, Addepalli B, Yun KY, Hunt AG, Xu R, Rao S, Li QQ, Falcone DL (2008) A polyadenylation factor subunit implicated in regulating oxidative signaling in Arabidopsis thaliana. PLoS One 3(6):e2410. doi:10.1371/journal.pone.0002410

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang R, Wise RR, Struck KR, Sharkey TD (2010) Moderate heat stress of Arabidopsis thaliana leaves causes chloroplast swelling and plastoglobule formation. Photosynth Res 105(2):123–134

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136(1):2621–2632

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zou S, Liu Y, Zhang XQ, Chen Y, Ye M, Zhu X, Yang S, Lipatova Z, Liang Y, Segev N (2012) Modular TRAPP complexes regulate intracellular protein trafficking through multiple Ypt/Rab GTPases in Saccharomyces cerevisiae. Genetics 191(2):451–460

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

For the yeast arf1Δ arf2Δ and ypt31Δ ypt32 ts double mutants, we thank Prof Akihiko Nakano (RIKEN, Japan), and Prof Nava Segev (The University of Illinois at Chicago, USA), respectively. The authors are grateful to Victoria Gyzander for technical assistance (University of Gothenburg), and Csilla Gergely (Eötvös University) for skilful assistance with electron microscopic sample preparation. For providing antibodies we thank Prof Adrian Clarke (Lhcb2 and Rubisco) and Prof Felix Kessler (Toc75). This work was supported by Carl Tryggers Foundation (to H.A.), Olle Engkvist Byggmästare Foundation (to H.A.), the Royal Society of Arts and Sciences in Gothenburg (to S.K.), the Swedish Research Council (to H.A.), and Ph.D. student fellowships from the University of Malakand (to N.Z.) and Libyan Higher Education (to M.A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Aronsson.

Additional information

Sazzad Karim and Mohamed Alezzawi have contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 411 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karim, S., Alezzawi, M., Garcia-Petit, C. et al. A novel chloroplast localized Rab GTPase protein CPRabA5e is involved in stress, development, thylakoid biogenesis and vesicle transport in Arabidopsis. Plant Mol Biol 84, 675–692 (2014). https://doi.org/10.1007/s11103-013-0161-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-013-0161-x

Keywords

Navigation