Skip to main content
Log in

Grape stems as a source of bioactive compounds: application towards added-value commodities and significance for human health

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Phenolic compounds occur in high concentration in grapes (Vitis vinifera L.) and grape’s by-products as secondary metabolites responsible for distinct functions linked to plants protection against biotic and abiotic environmental stress. Once integrated as an ingredient in added-value products, these compounds are responsible for the protective effect described regarding plant material extracts, which has become an increasingly important area of applied research. Grape stems constitute the less valorised residue from grapes derived from the winery industry. Moreover to their value as a source of bioactive (poly)phenols, this material could display an additional advantage due to their content in complex carbohydrates, which provide benefits through improving the digestive process as insoluble fibres that reduce the absorption of unhealthy fats and promote detoxification processes. However, the application of this material as a functional ingredient might entail the modification of the (poly)phenolic profile resulting from processing procedures. These microbiological derived compounds require a further evaluation concerning their biological activity and technological applications. The inclusion of intact (poly)phenolic extracts of grape-stems in cosmetic and pharmaceutical formulations may allow to evaluate directly the biological effect of these compounds in vivo. This is an overview of the compounds present in grape stems and their potential to exert valuable biological and technological applications through their integration in distinct added-value products as well as the impact of available processing alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

DF:

Dietary fibre

ROS:

Reactive oxygen species

RSM:

Response surface methodology

SSF:

Solid state fermentation

References

  • Aliakbarian B, Dehghani F, Perego P (2009) The effect of citric acid on the phenolic contents of olive oil. Food Chem 116:617–623

    Article  CAS  Google Scholar 

  • Alonso AM, Guillen DA, Barroso CG, Puertas B, García A (2002) Determination of antioxidant activity of wine by-products and it correlation with polyphenolic content. J Agri Food Chem 50(21):5832–5836

    Article  CAS  Google Scholar 

  • Arvanitoyannis IS, Ladas D, Mavromatis A (2006) Potential uses and applications of treated wine waste: a review. Int J Food Sci Technol 41:475–487

    Article  CAS  Google Scholar 

  • Barros A, Gironés-Vilaplana A, Teixeira A, Collado-González J, Moreno DA, Gil-Izquierdo A, Rosa E, Domínguez-Perles R (2014) Evaluation of grape (Vitis vinifera L.) stems from Portuguese varieties as a resource of (poly)phenolic compounds: a comparative study. Food Res Int 65:375–384

    Article  CAS  Google Scholar 

  • Basha SM, Musingo M, Colova VS (2004) Compositional differences in the phenolics compounds of muscadine and bunch grape wines. Afr J Biotechnol 3(10):523–528

  • Boye JI, Arcand Y (2013) Current trends in green technologies in food production and processing. Food Eng Rev 5:1–17

    Article  CAS  Google Scholar 

  • Bustamante MA, Moral R, Paredes C, Pérez-Espinosa A, Moreno-Caselles J, Pérez-Murcia MD (2008) Agrochemical characterisation of the solid by-products and residues from the winery and distillery industry. Waste Manage 28:372–380

    Article  CAS  Google Scholar 

  • Del Rio D, Rodriguez-Mateos A, Spencer JPE, Tognolini M, Borges G, Crozier A (2013) Dietary (Poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Reox Signal 18(14):1818–1892

    Article  Google Scholar 

  • Deshpande S, Cheryan M, Salunkhe D (1986) Tannin analysis of food products. CRC Crit Rev Food Sci 24:401–449

    Article  CAS  Google Scholar 

  • Dhingra D, Michael M, Rajput H, Patil RT (2012) Dietary fibre in foods: a review. J Food Sci Technol 49(3):255–266

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dias C, Domínguez-Perles R, Aires A, Teixeira A, Rosa E, Barros A, Saavedra MJ (2015) Phytochemistry and activity against digestive pathogens of grape (Vitis vinifera L.) stem’s (poly)phenolic extracts. LWT Food Sci Technol 61:1–8

    Article  Google Scholar 

  • Dohadwala MM, Vita JA (2009) Grapes and cardiovascular disease. J Nutr 139(9):1788S–1793S

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Domínguez-Perles R, Teixeira AI, Rosa E, Barros AI (2014) Assessment of (poly)phenols in grape (Vitis vinifera L.) stems by using food/pharma industry compatible solvents and response surface methodology. Food Chem 164:339–346

    Article  PubMed  Google Scholar 

  • Doshi P, Adsule P, Banerjee K, Oulkar D (2015) Phenolic compounds, antioxidant activity and insulinotropic effect of extracts prepared from grape (Vitis vinifera L.) byproducts. J Food Sci Technol 52(1):181–190

    Article  CAS  PubMed  Google Scholar 

  • Du WX, Avena-Bustillos RJ, Breksa AP III, McHugh TH (2014) UV-B light as a factor affecting total soluble phenolic contentsof various whole and fresh-cut specialty crops. Postharvest Biol Technol 93:72–82

    Article  CAS  Google Scholar 

  • Garrido J, Borges F (2013) Wine and grape polyphenols—a chemical perspective. Food Res Int 54:1844–1858

    Article  Google Scholar 

  • Gharras HE (2009) Polyphenols: food sources, properties and applications—a review. Int J Food Sci Technol 44:2512–2518

    Article  Google Scholar 

  • González-Centeno MR, Rosselló C, Simal S, Garau MR, López F, Femenia A (2010) Physico-chemical properties of cell wall materials obtained from ten grape varieties and their byproducts: grape pomaces and stems. LWT Food Sci Technol 43:1580e–1586e

    Article  Google Scholar 

  • González-Centeno MR, Jourdes M, Femenia A, Simal S, Rosselló C, Teissedre PL (2012) Proanthocyanidin composition and antioxidant potential of the stem winemaking byproducts from 10 different grape varieties (Vitis vinifera L.). J Agric Food Chem 60:11850–11858

    Article  PubMed  Google Scholar 

  • Jeffery DW, Parker M, Smith PA (2008) Flavonol composition of Australian red and white wines determined by high-performance liquid chromatography. Aust J Grape Wine Res 14:153–161

    CAS  Google Scholar 

  • Kammerer DR, Kammerer J, Valet R, Carle R (2014) Recovery of polyphenols from the by-products of plant food processing and application as valuable food ingredients. Food Res Int 65:2–12

    Article  CAS  Google Scholar 

  • Karvela E, Makris DP, Kalogeropoulos N, Karathanos VT (2009) Deployment of response surface methodology to optimise recovery of grape (Vitis vinifera) stem polyphenols. Talanta 79:1311–1321

    Article  CAS  PubMed  Google Scholar 

  • Katalinić V, Možina SS, Skroza D, Generalić I, Abramovič H, Miloš M, Ljubenkov I, Piskernik S, Pezo I, Terpinc P, Boban M (2010) Polyphenolic profile, antioxidant properties and antimicrobial activity of grape skin extracts of 14 Vitis vinifera varieties grown in Dalmatia (Croatia). Food Chem 119:715–723

    Article  Google Scholar 

  • Levin L, Diorio L, Grassi E, Forchiassin F (2012) Grape stalks as substrate for white rot fungi, lignocellulotytic enzyme preduction and dye decolorization. Rev Argent Microbiol 44:105–112

    CAS  PubMed  Google Scholar 

  • Liazid A, Guerrero RF, Cantos E, Palma M, Barroso CG (2011) Microwave assisted extraction of anthocyanins from grape skins. Food Chem 124(3):1238–1243

    Article  CAS  Google Scholar 

  • Llobera A, Canellas J (2007) Dietary fibre and antioxidant activity of Manto Negro red grape (Vitis vinifera): pomace and stem. Food Chem 101(2):659–666

    Article  CAS  Google Scholar 

  • Louli V, Ragoussis N, Magoulas K (2004) Recovery of phenolic antioxidants from wine industry by-products. Bioresour Technol 92:201–208

    Article  CAS  PubMed  Google Scholar 

  • Makris DP, Boskou G, Andrikopoulos N (2007) Polyphenolic content and in vitro antioxidant characteristics of wine industry and other agri-food solid waste extracts. J Food Comp Anal 20:125–132

    Article  CAS  Google Scholar 

  • Mann JI, Cummings JH (2009) Possible implications for health of the different definitions of dietary fibre. Nutr Metab Cardiovasc Dis 19:226e–229e

    Article  Google Scholar 

  • Marín FR, Soler-Rivas C, Benavente-García O, Castillo J, Pérez-Alvarez JA (2007) By-products from different citrus processes as a source of customized functional fibres. Food Chem 100:736e–741e

    Article  Google Scholar 

  • Marqués JL, Della Porta G, Reverchon E, Renuncio JAR, Mainar AM (2013) Supercritical antisolvent extraction of antioxidants from grape seeds after vinification. J Supercrit Fluid 82:238–243

    Article  Google Scholar 

  • Martínez M, Miralles N, Hidalgo S, Fiol N, Villaescusa I, Poch J (2006) Removal of lead (II) and cadmium (II) from aqueous solutions using grape stalk waste. J Hazard Mater B133:203–211

    Article  Google Scholar 

  • Martins ES, Silva D, Da Silva R, Gomes E (2002) Solid state production of thermostable pectinases from thermophilic Thermoascus aurantiacus. Process Biochem 37:949–954

    Article  CAS  Google Scholar 

  • Montealegre PR, Peces RR, Vozmediano JLC, Gascueña JM, Romero G (2006) Phenolic compounds in skins and seeds of ten grape Vitis vinifera varieties grown in a warm climate. J Food Comp Anal 19:687–693

    Article  Google Scholar 

  • Naczk M, Shahidi F (2004) Extraction and analysis of phenolics in food. J Chromatogr A 1054:95–111

    Article  CAS  PubMed  Google Scholar 

  • Nerantizis ET, Tataridis P (2006) Integrated enology-utilization of winery by-products into high added value products. E-JST 1:179–189

    Google Scholar 

  • Oliveira DA, Salvador AA, Smânia A Jr, Smânia EFA, Maraschin M, Ferreira SRS (2013) Antimicrobial activity and composition profile of grape (Vitis vinifera) pomace extracts obtained by supercritical fluids. J Biotechnol 164:423–432

    Article  CAS  PubMed  Google Scholar 

  • Orzua MC, Mussatto SI, Contreras-Esquivel JC, Rodríguez R, de la Garza H, Teixeira JA, Aguilar CN (2009) Exploitation of agro industrial wastes as immobilization carrier for solid-sate fermentation. Ind Crops Prod 30:24–27

    Article  CAS  Google Scholar 

  • Piñeiro Z, Guerrero RF, Fernández-Marin MI, Cantos-Villar E, Palma M (2013) Ultrasound-assisted extraction of stilbenoids from grape stems. J Agric Food Chem 61:12549–12556

    Article  PubMed  Google Scholar 

  • Rimm EB, Stampfer MJ, Ascherio A, Giovannucci E, Colditz GA, Willett WC (1993) Vitamin E consumption and the risk of coronary heart disease in men. N Engl J Med 328:1450–1456

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez Couto S, Domínguez A, Sanromán A (2001) Utilisation of lignocellulosic wastes for lignin peroxidase production by semi-solid-state cultures of Phanerochaete chrysosporium. Biodegradation 12(5):283–289

    Article  PubMed  Google Scholar 

  • Rodríguez-Couto S (2008) Exploitation of biological wastes for the production of value-added products under solid-state fermentation conditions. Biotechnol J 3:859–870

    Article  PubMed  Google Scholar 

  • Ruane J, Sonnino A, Agostini A (2010) Bioenergy and the potential contribution of agricultural biotechnologies in developing countries. Biomass Bioenergy 34:1427–1439

    Article  Google Scholar 

  • Ruberto G, Renda A, Daquino C, Amico V, Spatafora C, Tringali C, De Tommasi N (2007) Polyphenol constituents and antioxidant activity of grape pomace extracts from five Sicilian red grape cultivars. Food Chem 100(1):203–210

    Article  CAS  Google Scholar 

  • Sá M, Justino V, Spranger MI, Zhao YQ, Hanc L, Suna BS (2013) Extraction yields and anti-oxidant activity of proanthocyanidins from different parts of grape pomace: effect of mechanical treatments. Phytochem Anal 25:134–140

    PubMed  Google Scholar 

  • Santana-Méridas O, González-Coloma A, Sánchez-Vioque R (2012) Agricultural residues as a soutce of bioactive natural products. Phytochem Rev 11:447–466

    Article  Google Scholar 

  • Souquet JM, Labarbe B, Guernevé CL, Cheynier V, Moutounet M (2000) Phenolic composition of grape stems. J Agric Food Chem 48:1076–1080

  • Spiller GA (1986) Suggestions for a basis on which to determine a desirable intake of dietary fibre. In: Spiller GA (ed) CRC handbook of dietary fibre in human nutrition. CRC Press, Florida, pp 281e–283e

    Google Scholar 

  • Stewart D (2008) Lignin as a base material for materials applications: chemistry, application and economics. Ind Crops Prod 27:202–207

    Article  CAS  Google Scholar 

  • Sun BS, Belchior P, Ricardo-da-Silva JM, Spranger MI (1999) Isolation and purification of dimeric and trimeric procyanidins from grape seeds. J Chromatogr A 841:115–121

    Article  CAS  Google Scholar 

  • Suriano S, Alba V, Tarricone L, Di Gennaro D (2015) Maceration with stems contact fermentation: effect on proanthocyanidins compounds and color in Primitivo red wines. Food Chem 177:382–389

    Article  CAS  PubMed  Google Scholar 

  • Teixeira A, Baenas N, Dominguez-Perles R, Barros A, Rosa E, Moreno DA, Garcia-Viguera C (2014) Natural bioactive compounds from winery by-products as health promoters: a review. Int J Mol Sci 15:15638–15678

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Topakas E, Kalogeris E, Kekos D, Macris BJ, Christakopoulos P (2003) Bioconversion of ferulic acid into vanillic acid by the thermophilic fungus Sporotrichum thermophile. Lebensm Wiss Technol 36:561–565

    Article  CAS  Google Scholar 

  • van de Wiel A, van Golde PHM, Hart HCh (2001) Blessings of the grape. Eur J Intern Med 12:484–489

    Article  PubMed  Google Scholar 

  • Vessal M, Hemmati M, Vasei M (2003) Antidiabetic effects of quercetin in streptozocin-induced diabetic rats. Comp Biochem Physiol 135:357–364

    Article  Google Scholar 

  • Villaescusa I, Fiol N, Martínez M, Miralles N, Poch J, Serarols J (2004) Removal of copper and nickel ions from aqueous solutions by grape stalks wastes. Water Res 38:992–1002

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by national funds by FCT—Portuguese Foundation for Science and Technology, under the Project UID/AGR/04033/2013 and Project INNOFOOD—INNovation in the FOOD sector through the valorization of food and agro-food by-products—NORTE-07-0124-FEDER-0000029, financed by the North Portugal Regional Operational Programme (ON.2—O Novo Norte) under the National Strategic Reference Framework (QREN), through the European Regional Development Fund (FEDER), as well as by National Funds (PIDDAC) through the FCT/MEC. RDP was supported by a Postdoctoral contract from the Portuguese Foundation for Science and Technology within the framework of the National Scientific and Technologic System. Contracting AGV and NB were founded by the CSIC/European Social Fund for a JAE pre-doctoral Grant and by a FPU (Formación de Profesorado Universitario) Grant of the Fellowship Programme from the Spanish Ministry of Education, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl Domínguez-Perles.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barros, A., Gironés-Vilaplana, A., Texeira, A. et al. Grape stems as a source of bioactive compounds: application towards added-value commodities and significance for human health. Phytochem Rev 14, 921–931 (2015). https://doi.org/10.1007/s11101-015-9421-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-015-9421-5

Keywords

Navigation