Skip to main content
Log in

Chemical constituents and biological activities of South American Rhamnaceae

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Secondary metabolites have diverse functions into plants. These functions are products of the coevolution which result in synthesis of constitutive and/or induced chemical defense generated for protection against to different phytopathogenic attack. Many phytochemical studies are biodirected with the aim of finding biopesticides of botanical origins. Some taxa of Americas such as Rhamnaceae family are toxic to insects, fungi and several bacteria strains, and these effects has been associated with the presence of alkaloids, phenolics and terpenes. The natural compounds that have been isolated represent a valuable resource for future studies of plant chemical defense and the role of these substances in chemical ecology. Here are show recent advances in the phytochemistry and biological activities of selected members of Rhamnaceae from Latin-America.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akhtar Y, Yeoung YR, Isman MB (2008) Comparative bioactivity of selected extracts from Meliaceae and some commercial botanical insecticides against two noctuid caterpillars, Trichoplusia ni and Pseudaletia unipuncta. Phytochem Rev 7:77–88

    Article  CAS  Google Scholar 

  • Alarcon J, Molina S, Villalobos N, Lillo L, Lamilla C, Céspedes CL, Siegler D (2011) Insecticidal activity of Chilean Rhamnaceae: Talguenea quinquenervi (Gill. et Hook). Bol Latinoamer Carib Plant Med Aromat 10:380–385

    Google Scholar 

  • Berenbaum MR (1989) North American ethnobotanicals as sources of novel-plant based insecticides. In: Arnason JT, Philogene BJR, Morand P (eds) Insecticides of plant origin. ACS symposium series, vol 387. American Chemical Society, Washington DC, pp 11–24

    Chapter  Google Scholar 

  • Berenbaum MR (2002) Postgenomic chemical ecology: from genetic code to ecological interactions. J Chem Ecol 28(5):873–896

    Article  CAS  PubMed  Google Scholar 

  • Bhakuni DS, Gonzalez C, Sammes PG, Silva M (1974) The alkaloids of Retanilla ephedra (VENT) BROGN. Rev Latinoamer Quim 5:158–162

    CAS  Google Scholar 

  • Brady D, Guidance for assessing pesticide risk to bees (Environmental Protection Agency memorandum). http://www2.epa.gov/sites/production/files/201406/documents/pollinator_risk_assessment_guidance_06_19_14.pdf

  • Cespedes C, Calderon J, Lina L, Aranda E (2000) Growth inhibitory effects on fall armyworm Spodoptera frugiperda of some limonoids isolated from Cedrela spp (Meliaceae). J Agric Food Chem 48(5):1903–1908

    Article  CAS  PubMed  Google Scholar 

  • Cespedes CL, Alarcon J, Aranda E, Becerra J, Silva M (2001) Insect growth regulator and insecticidal activity of b-dihydroagarofurans from Maytenus spp. (Celastraceae). Z. Naturforsch. C 56c:603–613

    Google Scholar 

  • Cespedes CL, Torres P, Marin JC, Arciniegas A, Perez-Castorena AL, Romo de Vivar A, Aranda E (2004) Insect growth inhibition by tocotrienols and hydroquinones from Roldana barba-johannis (Asteraceae). Phytochem 65:1963–1975

    Article  CAS  Google Scholar 

  • Cespedes CL, Salazar JR, Martinez M, Aranda E (2005) Insect growth regulatory effects of some extracts and sterols from Myrtillocactus geometrizans (Cactaceae) against Spodoptera frugiperda and Tenebrio molitor. Phytochem 66:2481–2493

    Article  CAS  Google Scholar 

  • Cespedes CL, Avila JG, Marin JC, Dominguez M, Torres P, Aranda E (2006) Natural compounds as antioxidant and molting inhibitors can play a role as a model for search of new botanical pesticides. In: Rai M, Carpinella MC (eds) Naturally occurring bioactive compounds. Advances in Phytomedicine Series., vol 3Elsevier, The Netherlands, pp 1–27

    Chapter  Google Scholar 

  • Cespedes CL, Molina SC, Muñoz E, Lamilla C, Alarcon J, Palacio S, Carpinella MC, Avila JG (2013) The insecticidal, molting disruption and insect growth inhibitory activity of extracts from Condalia microphylla Cav. (Rhamnaceae). Ind Crop Prod 42:78–86

    Article  CAS  Google Scholar 

  • Conner WE, Boada R, Schroeder FC, Gonzalez A, Meinwald J, Eisner T (2000) Chemical defense: bestowal of a nuptial alkaloidal garment by a male moth on its mate. Proc Natl Acad Sci 97(26):14406–14411

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Correa C, Urzua A, Torres R  (1987) 1,2,11-trimethoxynoraporphine from Discaria chacaye (G. Don) Tort. Bol Soc Chil Quim 32(2):105–106

  • Delgado F, Burtre C, Capetillo F, Salvat A, Blanco Viera FJ  (2011) Outbreak of ataxia in pigs associated with consumption of piquillin (Condalia microphylla). Vet Pathol 48:803–806

  • Delporte CL, Backhouse CN, Erazo S, Negrete RE, Silva C, Hess A, Muñoz O, Gracia-Gravalos M, San Feliciano A (1997) Biological activities and metabolites from Trevoa trinervis Miers. Phytother Res 11:504–507

    Article  CAS  Google Scholar 

  • Eisner T, Eisner M, Aneshansley DJ, Wu CL, Meinwald J (2000) Chemical defense of the mint plant, Teucrium marum (Labiatae). Chemoecology 10(4):211–216

    Article  CAS  Google Scholar 

  • Feng RY, Chen WK, Isman MB (1995) Synergism of malathion and inhibition of midgut esterase activities by an extract from Melia toosendan (Meliaceae). Pestic Biochem Physiol 53:34–41

  • Fujioka T, Kashiwada Y, Kilkuskie RE, Cosentino LM, Ballas LM, Jiang JB, Janzen WP, Chen I-S, Lee K-H (1994) Anti-AIDS Agent 11. Betulinic acid and platanic acid as anti-HIV principles from Syzigium claviflorum, and the anti-HIV activity of structurally related triterpenoids. J Nat Prod 57:243–247

    Article  CAS  PubMed  Google Scholar 

  • Ganapaty S, Thomas PS, Ramana KV, Karagianis G, Waterman PG (2006) Dammarane and Ceanothane triterpenes from Zizyphus glabra. Z. Naturforsch. B 61b:87–92

    Google Scholar 

  • Giacomelli SR, Missau FC, Mostardeiro MA, da Silva UF, Dalcol I, Zanatta N, Morel AF (2001) Cyclopeptides from the bark of Discaria americana. J Nat Prod 64:997–999

    Article  CAS  PubMed  Google Scholar 

  • González-Coloma A, López-Balboa C, Santana O, Reina M, Fraga BM (2011) Triterpene-based plant defenses. Phytochem Rev 10:245–260

  • Guise G, Ritchie E, Taylor W (1962) Further constituents of Alphitonia species. Aust J Chem 15:314–321

    Article  CAS  Google Scholar 

  • Guo S, Tang YP, Duan JA, Su SL, Ding AW (2009) Two new terpenoids from fruits of Ziziphus jujube. Chin Chem Lett 20:197–200

    Article  Google Scholar 

  • Hagel JM, Facchini PJ (2013) Benzylisoquinoline alkaloid metabolism: a century of discovery and a brave new world. Plant Cell Physiol 54(5):647–672

    Article  CAS  PubMed  Google Scholar 

  • Halse K, Solheim E, Nordstoga K (1993) Pathological hepatic accumulation of long-chain n-alkanes (“paraffin liver”) in cows (Harbitz and Fölling, 1940). An overlooked discovery. Description of lesions and identification of alkanes. APMIS 101(6):430–436

  • Hawkins K, Smolke Ch (2008) Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae. Nat Chem Biol 4(9):564–573

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasing regulated world. Ann Rev Entomol 51:45–66

    Article  CAS  Google Scholar 

  • Jagadeesh SG, Krupadanam GLD, Srimannarayana G (2000) A new triterpenoid from Zyzyphus xylopyrus stem wood. Ind J Chem Sect B 39:396–398

    Google Scholar 

  • Karban R, Baxter KJ (2001) Induced resistance in wild tobacco with clipped sage brush neighbors: the role of herbivore behavior. J Insect Behav 14:147–156

  • Kessler A, Baldwin IT (2002) Plant responses to insect herbivory: the emerging molecular analysis. Ann Rev Plant Biol 53:299–328

    Article  CAS  Google Scholar 

  • Kubo I, Kinst-Hori I, Nihei KI, Soria F, Takasaki M, Calderon JS, Cespedes CL (2003) Tyrosinase inhibitors from Galls of Rhus javanica leaves and their effects on insects. Z Naturforsch 58c:719–725

  • Kundu AB, Barik BR, Mondal DN, Dey AK, Banerji A (1989) Zizyberanalic acid, a pentacyclic triterpenoid of Zyzyphus jujube. Phytochemistry 26:3155–3158

    Article  Google Scholar 

  • Lee SS, Su WC, Liu KC (1991) Two new triterpenes glucosides from Pailurus ramosissimus. J Nat Prod 54:615–618

    Article  CAS  Google Scholar 

  • Lee SS, Shy SN, Liu KC (1997) Triterpenes from Pailurus hemsleyanus. Phytochemistry 46:549–554

    Article  CAS  Google Scholar 

  • Lee SS, Chen WC, Huang CF, Su Y (1998) Preparation and cytotoxic effect of ceanothic acid derivatives. J Nat Prod 61:1343–1347

    Article  CAS  PubMed  Google Scholar 

  • Lee SM, Min BS, Lee Ch-G, Kim K-S, Kho YH (2003) Cytotoxic Triterpenoids from the Fruits of Zizyphus jujube. Planta Med 69:1051–1054

    Article  CAS  PubMed  Google Scholar 

  • Li XC, Cai L, Wu CD (1997) Antimicrobial compounds from Ceanothus americanus against oral pathogens. Phytochemistry 46:97–102

    Article  CAS  PubMed  Google Scholar 

  • Liu M-J, Zhao J, Cai Q-L, Liu G-C V, Wang J-R, Zhao Z-H et al (2014). The complex jujube genome provides insights into fruit tree biology. Nat Commun 5:5315 doi: 10.1038/ncomms6315; www.nature.com/naturecommunications

  • Mahajan RT, Chopda MZ (2009) Phyto-pharmacology of Ziziphus jujuba mill—a plant review. Pharm Rev 3(6):320–329

    CAS  Google Scholar 

  • Marticorena C (1990) Contribución a la estadística de la flora vascular de Chile. Gayana Bot 47(3–4):85–113

    Google Scholar 

  • Marticorena C, Quezada M (1985) Catálogo de la flora vascular de Chile. Gayana Bot 42(1–2):1–157

    Google Scholar 

  • Medan D, Arbetman M, Chaia E, Premoli A (2012) Interspecific and Intergeneric hybridation in South American Rhamnaceae-Colletieae. Plant Syst Evol 298:1425–1435

    Article  Google Scholar 

  • Meinwald J (2001) Sex, violence and drugs in the world of insects: a chemist’s view. Science 5:80–92

    Google Scholar 

  • Montes M, Wilkomirsky T (1981) Planta chilenas en Medicina Popular. Ciencia y Folklore. Escuela de Quimica y Farmacia, y Bioquímica. Universidad de Concepción, Chile

    Google Scholar 

  • Morel AF, Araujo CA, da Silva UF, Hoelzel SCSM, Záchias R, Bastos NR (2002) Antibacterial cyclopeptide alkaloids from bark of Condalia buxifolia. Phytochemistry 61:561–566

    Article  CAS  PubMed  Google Scholar 

  • Muñoz M, Barrera M, Meza I (1981) El uso medicinal de plantas nativas y naturalizadas en Chile. Publicación Ocasional No 33, Museo Nacional de Historia Natural, Santiago, Chile

  • Pacheco P, Albonico SM, Silva M (1973) Alkaloids, triterpenes and other constituents of Discaria crenata. Phytochemistry 12:954–955

    Article  CAS  Google Scholar 

  • Pisha E, Chai H, Lee I-S, Chagwedera TE, Farnsworth NR, Cordell GA, Beecher CW, Fong HH, Kinghorn AD, Brown DM, Wani MC, Wall ME, Hieken TJ, Das Gupta TK, Pezzuto JM (1995) Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis. Nat Med 1:1046–1051

    Article  CAS  PubMed  Google Scholar 

  • Quiroz S, Cespedes CL, Alderete JB, Alarcon J (2015) Ceanothane and oleanane-type triterpenes from T. quinquenervia have insecticidal activity against Cydia pomonella, Tenebrio molitor and Drosophila melanogaster. Ind. Crop Prod (in press)

  • Rhodes ShL, Fitzmaurice AG, Cockburn M, Bronstein JM, Sinsheimer JS, Ritz B (2013) Pesticides that inhibit the ubiquitin-proteasome system: effect measure modification by genetic variation in SKP1 in Parkinson’s disease. Environ Res 126:1–8

    Article  CAS  PubMed  Google Scholar 

  • Richardson JE, Fay MF, Cronk QCB, Bowman D, Mark W, Chase MWA (2000) Phylogenetic analysis of Rhamnaceae using rbcl trnL-F Plastid DNA sequences. Am J Bot 87(9):1309–1323

    Article  CAS  PubMed  Google Scholar 

  • Rivera A, Urzua A, Torres R (1984) 1,2-dimethoxy-11-hydroxyaporphine from Discaria serratifolia var. Montana. J Nat Prod 47:1040–1041

    Article  CAS  Google Scholar 

  • Roitman JN, Jurd L (1978) Triterpenoids and phenolic constituent of Colubrina granulosa. Phytochemistry 17:491–494

    Article  CAS  Google Scholar 

  • Rosner D, Markowitz G (2013) Persistent pollutants: a brief history of the discovery of the wide spread toxicity of chlorinated hydrocarbons. Environ Res 120:126–133

    Article  CAS  PubMed  Google Scholar 

  • Shah AH, Tariq M, Al-Yahya MA (1990) Studies on the alkaloidal fraction from the stem bark of Zizyphus nummularia. Fitoterapia 61:469

    Google Scholar 

  • Silva M, Bhakuni D, Sammes PG, Pais M, Jarreau FX (1974) A new peptide alkaloid from Discaria crenata. Phytochemistry 13:861–863

    Article  CAS  Google Scholar 

  • Suksamrarn S, Panseeta P, Kunchanawatta S, Distaporn T, Ruktasing S, Suksamrarn A (2006) Ceanothane- and lupane-type triterpenes with antiplasmodial and antimycobacterial activities from Ziziphus cambodiana. Chem Pharm Bull 54:535–537

    Article  CAS  PubMed  Google Scholar 

  • Tan N-H, Zhou J (2006) Plant cyclopeptides. Chem Rev 106:840–895

    Article  CAS  PubMed  Google Scholar 

  • Torres R, Sánchez E (1971) Alkaloids and friedelin from several Chilean Rhamnaceae species. Anales Asoc Quim Argent 59:343

  • Torres R, Delle Monache F, Marini GB (1979) Alkaloid from Discaria serratifolia. J Nat Prod 42:430–431

    Article  CAS  Google Scholar 

  • Torres  P, Avila JG, Romo de Vivar A, García AM, Marín JC, Aranda E, Cespedes CL (2003) Antioxidant and insect growth regulatory activities of stilbenes and extracts from Yucca periculosa. Phytochemistry 64:463–473

  • Tortosa RD (1983) El género Discaria (Rhamnaceae). Bol Soc Argent Bot 22(1–4):301–335

    Google Scholar 

  • Tortosa R (1992) El complejo Retanilla-Talguenea-Trevoa (Rhamnaceae). Darwiniana 31:223–252

    Google Scholar 

  • Trevisan G, Maldaner G, Velloso N, da Silva G, Ilha V, Velho C, Rubin MA, Morel AF, Ferreita J (2009) Antinoceptive effects of 14-membered cyclopeptide alkaloids. J Nat Prod 72:608–612

    Article  CAS  PubMed  Google Scholar 

  • Yoshikawa M, Murakami T, Ikebata A, Wakao S, Murakami N, Matsuda H, Yamahara J (1998) A lupane-triterpene and a 3(2 1)abeolupane glucoside from Hovenia trichocarea. Phytochemistry 49:2057–2060

    Article  CAS  Google Scholar 

  • Zhang P, Xu L, Qian K, Liu J, Zhang L, Lee K-H, Sun H (2011) Efficient synthesis and biological evaluation of epiceanothic acid and related compounds. Bioorg Med Chem Lett 21:338–341

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

To Fondecyt program grant # 1130463. The authors wish to thank to internal grant from Dirección de Investigación DIUBB # 083009-2R, # 122509 and # 132209 GI/C, Universidad del Bio Bio, Chillán, Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Alarcón.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alarcón, J., Cespedes, C.L. Chemical constituents and biological activities of South American Rhamnaceae. Phytochem Rev 14, 389–401 (2015). https://doi.org/10.1007/s11101-015-9404-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-015-9404-6

Keywords

Navigation