Skip to main content
Log in

Response of snapdragon (Antirrhinum majus L.) to blended water irrigation and arbuscular mycorrhizal fungi inoculation: uptake of minerals and leaf water relations

  • Original Paper
  • Published:
Photosynthetica

Abstract

A greenhouse study was performed in order to investigate the effects of three arbuscular mycorrhizal fungi (AMF) species on vegetative growth, water relations, and mineral composition parameters of snapdragon (Antirrhinum majus cv. Bells white) under irrigation from different water sources. Five irrigation treatments included using purely desalinized (fresh) water (DW), as a control, three different blends of DW with saline ground water from a well with increasing salinity, and one with 100% of saline well water. Inoculation with AMF enhanced growth rates and a relative water content of snapdragon plants grown under well-water irrigation. AMF also improved the leaf water potential and increased water-use efficiency of the plants. Shoot and root dry masses were higher in the AMF-treated plants than those in AMF-free plants. In both shoots and roots, concentrations of total P, Ca2+, N, Mg2+, and K+ were higher in the AMF-treated plants compared with AMF-free plants under salt-stress conditions. Shoot Cl- and Na+ concentrations were lower in the AMF-treated plants than those in the AMF-free plants grown under well-water irrigation. Snapdragon plants exhibited a high degree of dependency on AMF; it improved plant growth rates and leaf water relations, particularly, with increasing salinity of irrigation water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AMF:

arbuscular mycorrhizal fungi

DM:

dry mass

DW:

desalinized water

FM:

fresh mass

Pt:

plant tolerance

RWC:

relative water content

WW:

well water

WUE:

water-use efficiency

ψw :

leaf water potential

References

  • Al-Karaki G.N., Clark R.B.: Growth, mineral acquisition, and water use by mycorrhizal wheat grown under water stress. — J. Plant Nutr. 21: 263–276, 1998.

    Article  CAS  Google Scholar 

  • Al-Karaki G.N., Hammad R., Rusan M.: Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. — Mycorrhiza 11: 43–47, 2001.

    Article  CAS  Google Scholar 

  • Al-Karaki G.N.: Barley response to salt stress at varied phosphorus. — J. Plant Nutr. 20: 1635–1643, 1997.

    Article  CAS  Google Scholar 

  • Al-Karaki G.N.: Growth of mycorrhizal tomato and mineral acquisition under salt stress. — Mycorrhiza 10: 51–54, 2000.

    Article  CAS  Google Scholar 

  • Al-Karaki G.N.: Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. — Sci. Hortic.-Amsterdam 109: 1–7, 2006.

    Article  Google Scholar 

  • Al-Khaliel A.S.: Effect of salinity stress on mycorrhizal association and growth response of peanut infected by Glomus mosseae. — Plant Soil Environ. 56: 318–324, 2010.

    CAS  Google Scholar 

  • Allen S.E.: Chemical Analysis of Ecological Materials. 2nd ed. Pp. 368. Blackwell Sci. Publ., Osney 1989.

    Google Scholar 

  • Amer A.F.: Effect of salinity stress, increasing gradually and suddenly treatments, on plant nutrient uptake and content of some carbohydrate fractions. — Egypt. J. Soil Sci. 39: 111–128, 1999.

    CAS  Google Scholar 

  • Aroca R., Del Mar Alguacil M., Vernieri P. et al.: Plant responses to drought stress and exogenous ABA application are modulated differently by mycorrhization in tomato and an ABA-deficient mutant (Sitiens). — Microb. Ecol. 56: 704–719, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Augé R.M.: Arbuscular mycorrhizae and soil/plant water relations. — Can. J. Soil Sci. 84: 373–381, 2004.

    Article  Google Scholar 

  • Augé R.M.: Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. — Mycorrhiza 11: 3–42, 2001.

    Article  Google Scholar 

  • Bates L.S., Waldren R.P., Teare I.D.: Rapid determination of free proline for water stress studies. — Plant Soil 39: 205–207, 1973.

    Article  CAS  Google Scholar 

  • Borde M., Dudhane M., Jite P.: Growth photosynthetic activity and antioxidant responses of mycorrhizal and non-mycorrhizal bajra (Pennisetum glaucum) crop under salinity stress condition. — Crop Prot. 30: 265–271, 2011.

    Article  CAS  Google Scholar 

  • Bulíř P.: Testing method applied for evaluation of ornamental trees in the Czech Republic. — HortSci. 36: 154–161, 2009.

    Google Scholar 

  • Campanelli A., Ruta C., De Mastro G. et al.: The role of arbuscular mycorrhizal fungi in alleviating salt stress in Medicago sativa L. — Symbiosis 59: 65–76, 2013.

    Article  Google Scholar 

  • Campanelli A., Ruta C., Morone-Fortunato I. et al.: Influence of mycorrhizal inoculation on the salt tolerance of artichoke hybrid seedlings. — J. Agric. Sci. Technol. 2: 1071–1079, 2012.

    CAS  Google Scholar 

  • Cantrell I.C., Linderman R.G.: Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. — Plant Soil 233: 269–281, 2001.

    Article  CAS  Google Scholar 

  • Carter T.C., Grieve C.M.: Mineral nutrition, growth, and germination of Antirrhinum majus L. (Snapdragon) when produced under increasingly saline conditions. — HortSci. 43: 710–718, 2008.

    Google Scholar 

  • Çekiç F.O., Ünyayar S., Ortas I.: Effects of arbuscular mycorrhizal inoculation on biochemical parameters in Capsicum annuum grown under long term salt stress. — Turk. J. Bot. 36: 63–72, 2012.

    Google Scholar 

  • Chapman H.D., Pratt P.F.: Ammonium vandate-molybdate method for determination of phosphorus. — In: Chapman H.D., Pratt P.F. (ed.): Methods of Analysis for Soils, Plants and Water. 1st ed. Pp. 184–203. California Univ., California 1961.

    Google Scholar 

  • Colla G., Rouphael Y., Cardarelli M. et al..: Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. — Biol. Fertil. Soils 44: 501–509, 2008.

    Article  CAS  Google Scholar 

  • Crespo R.J.: Impact of Arbuscular Mycorrhizal Fungi on the Physiology of Maize Genotypes under Variable Nitrogen and Phosphorus Levels. Pp. 92–117. Dr. Thesis Agro. Hort. Dep. Nebraska Univ. Lincoln 2015.

    Google Scholar 

  • DeHayr R., Gordon I.: Irrigation water quality. I-salinity and soil structure stability. — Natl. Res. Sci. 55: 55–60, 2004.

    Google Scholar 

  • El-Nashar Y.I.: Response of snapdragon (Antirrhinum majus L.) to blending water irrigation and arbuscular mycorrhizal fungi inoculation. — Acta Hortic. 1034: 379–388, 2014.

    Article  Google Scholar 

  • Evelin H., Giri B., Kapoor R.: Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigat ion of ionic imbalance in NaCl-stressed Trigonellafoenumgraecum. — Mycorrhiza 22: 203–217, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Evelin H., Kapoor R., Giri B.: Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. — Ann. Bot.-London 104: 1263–1280, 2009.

    Article  CAS  Google Scholar 

  • Giri B., Kapoor R., Mukerji K.G.: Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. — Microbial Ecol. 54: 753–760, 2007.

    Article  CAS  Google Scholar 

  • Giri B., Kapoor R., Mukerji K.G.: Influence of arbuscular mycorrhizal fungi and salinity on growth, biomass, and mineral nutrition of Acacia auriculiformis. — Biol. Fertil. Soils 38: 170–175, 2003.

    Article  Google Scholar 

  • Giri B., Kaur M., Mukerji K.G.: Growth responses and dependency of Sesbania aegyptiaca on vesicular arbuscular mycorrhiza in salt stressed soil. — Ann. Agr. Res. 20: 109–112, 1999.

    Google Scholar 

  • Giri B., Mukerji K.G.: Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. — Mycorrhiza 14: 307–312, 2004.

    Article  PubMed  Google Scholar 

  • Gutiérrez-Boem F.H., Thomas G.W.: Phosphorus nutrition and water deficits in field-grown soybeans. — Plant Soil 207: 87–96, 1999.

    Article  Google Scholar 

  • Hatimi A.: Effect of salinity on the association between root symbionts and Acacia cyanophylla Lind: growth and nutrition. — Plant Soil 216: 93–101, 1999.

    Article  CAS  Google Scholar 

  • Kaya C., Ashraf M., Sonmez O. et al.: The influence of arbuscular mycorrhizal colonisation on key growth parameters and fruit yield of pepper plants grown at high salinity. — Sci. Hortic.-Amsterdam 121: 1–6, 2009.

    Article  CAS  Google Scholar 

  • Kaya C., Higgs D., Ince F. et al.: Ameliorative effects of potassium phosphate on salt stressed pepper and cucumber. — J. Plant Nutr. 26: 807–820, 2003.

    Article  CAS  Google Scholar 

  • Kaya C., Higgs D.: Response of tomato (Lycopersicon esculentum L.) cultivars to foliar application of zinc when grown in sand culture at low zinc. — Sci. Hortic.-Amsterdam 93: 53–64, 2002.

    Article  CAS  Google Scholar 

  • Kaya C., Tuna A.L., Ashraf M. et al.: Improved salt tolerance of melon (Cucumis melo L.) by the addition of proline and potassium nitrate. — Environ. Exp. Bot. 60: 397–403, 2007.

    Article  CAS  Google Scholar 

  • Khan H. R., Faiz S. M.A., Islam M. N. et al.: Effect of salinity, gypsum and Zn on mineral nutrition of rice. — Int. J. Trop. Agric. 10: 147–156, 1992.

    CAS  Google Scholar 

  • Kramer P.J., Boyer J.S.: Water Relation of Plants and Soils. Pp. 495. Academic Press, San Diego, CA, USA 1995.

    Google Scholar 

  • Kumar A., Mangla C., Kundu S. et al.: To understand arbuscular mycorrhizal fungi: A magical rootsymbiont for global sustainable agriculture. — Adv. Biores. 3: 78–84, 2012.

    Google Scholar 

  • Lovelli S., Perniola M., Ferrara A. et al.: Yield response factor to water (ky) and water use efficiency of Carthamus tinctorius L. and Solanum melongena L. — Agr. Water Manage. 92: 73–80, 2007.

    Article  Google Scholar 

  • Mohiuddin A.S., Ahmed I.U., Faiz B. et al.: Growth, yield and chemical composition of rice (Oriza sativa L.) under saline water irrigation. — Russ. J. Ecol. 28: 289–301, 1997.

    Google Scholar 

  • Morte A., Lovisolo C., Schubert A.: Effect of drought stress on growth and water relation of the mycorrhizal association Helianthemum almeriense-Terfezia claveryi. — Mycorrhiza 10: 115–119, 2000.

    Article  CAS  Google Scholar 

  • Munns R.: Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. — Plant Cell Environ. 16: 15–24, 1993.

    Article  CAS  Google Scholar 

  • Nelsen C.E., Safir G.R.: The water relations of well-watered, mycorrhizal and non-mycorrhizal onion plants. — J. Am. Soc. Hortic. Sci. 107: 271–274, 1982.

    Google Scholar 

  • Nelson D.W., Sommers L.E.: Determination of total nitrogen in plant material. — Agron. J. 65: 109–112, 1973.

    Article  CAS  Google Scholar 

  • Noufal E.H.A., Sadik M.K., Attia M.F.: Studies on tolerance of some plants to salinity. — Ann. Agric. Sci. 38: 1329–1346, 2000.

    Google Scholar 

  • Porcel R., Ruiz-Lozano J.M.: Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. — J. Exp. Bot. 55: 1743–1750, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Ragab R., Malash N., Abdel-Gawad G. et al.: A holistic genetic integrated approach for irrigation, crop and field management. 1. The SALTMED model and its calibration using field data from Egypt and Syria. — Agr. Water Manage. 78: 67–88, 2005.

    Article  Google Scholar 

  • Rahmaty R., Khara J.: Effects of vesicular arbuscular mycorrhiza Glomus intraradices on photosynthetic pigments, antioxidant enzymes, lipid peroxidation, and chromium accumulation in maize plants treated with chromium. — Turk. J. Biol. 35: 51–58, 2011.

    CAS  Google Scholar 

  • Rosendahl C.N., Rosendahl S.: Influence of vesicular-arbuscular mycorrhizal fungi (Glomus spp.) on the response of cucumber. — Environ. Exp. Bot. 31: 313–318, 1991.

    Article  Google Scholar 

  • Ruiz-Lozano J.M., Azcón R., Gómez M.: Alleviation of salt stress by arbuscular-mycorrhizal Glomus species in Lactuca sativa plants. — Physiol. Plantarum 98: 767–772, 1996.

    Article  CAS  Google Scholar 

  • Ruiz-Lozano J.M., Azcón R.: Hyphal contribution to water uptake in mycorrhizal plants as affected by the fungal species and water status. — Physiol. Plantarum 95: 472–478, 1995.

    Article  CAS  Google Scholar 

  • Ruiz-Lozano J.M., Azcón R., Gómez M.: Effects of arbuscularmycorrhizal Glomus species on drought tolerance: physiological and nutritional plant responses. — Appl. Environ. Microb. 61: 456–460, 1995.

    CAS  Google Scholar 

  • Ruiz-Lozano J.M.: Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. — Mycorrhiza 13: 309–317, 2003.

    Article  PubMed  Google Scholar 

  • SAS:SAS/STAT 9.2 User’s Guide Introduction to Statistical Modeling with SAS/STAT Software. Statistics. SAS Institute Inc., Cary 2008.

  • Sentenac H., Grignon C.: Effect of pH on orthophosphate uptakeby corn roots. — Plant Physiol. 77:136–141, 1985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheng M., Tang M., Chen H. et al.: Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. — Mycorrhiza 18: 287–296, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Shokri S., Maadi B.: Effect of arbuscular mycorrhizal fungus on the mineral nutrition and yield of Trifolium alexandrinum plants under salinity stress. — J. Agron. 8: 79–83, 2009.

    Article  CAS  Google Scholar 

  • Smith S.E., Read D.J.: Mycorrhizal Symbiosis, 3rd ed. Pp. 11–145. Academic Press, San Diego 2008.

    Google Scholar 

  • Steel R.G., Torrie J.H.: Principles and Procedures of Statistics. Pp. 232. Mc Graw-Hill, New York 1980.

    Google Scholar 

  • Subramanian K.S., Charest C.: Nutritional, growth, and reproductive responses of maize (Zea mays L.) to arbuscular mycorrhizal inoculation during and after drought stress at tasselling. — Mycorrhiza 7: 25–32, 1997.

    Article  Google Scholar 

  • Vanaja M., Yadav S.K., Archana G. et al.: Response of C4 (maize) and C3 (sunflower) crop plants to drought stress and enhanced carbon dioxide concentration. — Plant Soil Environ. 57: 207–215, 2011.

    Google Scholar 

  • Wu Q.S., Xia R.X.: Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. — J. Plant Physiol. 163: 417–425, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Wu Q.S., Zou Y.N.: Beneficial roles of arbuscular mycorrhizas in citrus seedlings at temperature stress. — Sci. Hortic.-Amsterdam 125: 289–293, 2010.

    Article  CAS  Google Scholar 

  • Zhu X.C., Song F.B., Liu S.Q. et al.: Arbuscular mycorrhizal improves photosynthesis and water status of Zea mays L. under drought stress. — Plant Soil Environ. 58: 186–191, 2012.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. I. El-Nashar.

Additional information

Acknowledgments: Authors wish to thank to College of Food and Agricultural Research Center and Deanship of Scientific Research, King Saud University, Saudi Arabia for supporting this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Nashar, Y.I. Response of snapdragon (Antirrhinum majus L.) to blended water irrigation and arbuscular mycorrhizal fungi inoculation: uptake of minerals and leaf water relations. Photosynthetica 55, 201–209 (2017). https://doi.org/10.1007/s11099-016-0650-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-016-0650-7

Additional key words

Navigation