Skip to main content
Log in

Evaluation of wild Arachis species for cultivation under semiarid tropics as a fodder crop

  • Published:
Photosynthetica

Abstract

Wild Arachis genotypes were analysed for chlorophyll a fluorescence, carbon isotope discrimination (ΔC), specific leaf area (SLA), and SPAD readings. Associations between different traits, i.e., SLA and SPAD readings (r =–0.76), SLA and ΔC (r = 0.42), and ΔC and SPAD readings (r = 0.30) were established. The ratio of maximal quantum yield of PSII photochemistry (Fv/Fm) showed a wider variability under water deficit (WD) than that after irrigation (IR). Genotypes were grouped according to the Fv/Fm ratio as: efficient, values between 0.80 and 0.85; moderately efficient, the values from 0.79 to 0.75; inefficient, the values < 0.74. Selected Selected genotypes were evaluated also for their green fodder yield: the efficient genotypes ranged between 3.0 and 3.8, the moderately efficient were 2.6 and 2.7, the inefficient genotypes were of 2.3 and 2.5 t ha−1 per year in 2008 and 2009, respectively. Leaf water-relation traits studied in WD and IR showed that the efficient genotypes were superior in maintenance of leaf water-relation traits, especially, under WD. Potential genotypes identified in this study may enhance biomass productivity in the semiarid tropic regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANOVA :

analysis of variance

DM:

dry mass

Chl:

chlorophyll

E :

transpiration rate

FM:

fresh mass

F0 :

minimal fluorescence yield of the dark-adapted state

Fm :

maximal fluorescence yield of the dark-adapted state

Fs :

steady-state fluorescence yield

Fv :

variable fluorescence

Fv/Fm :

maximal quantum yield of PSII photochemistry

F0/Fm :

thylakoid membrane stability

g s :

stomatal conductance

ICRISAT:

International Crop Research Institute for Semi–arid Tropics

IR:

irrigated (after irrigation)

LA:

leaf area

PCA:

principal component analysis

PDB:

PeeDee belemnite

RWC:

relative water content

RCBD:

completely randomized block design

SD:

standard deviation

SPAD:

soil plant analysis development

TM:

turgid mass

WD:

water-deficit (before irrigation)

ψw :

water potential

References

  • Barrs H.D., Weatherly P.E.: A re-examination of the relative turgidity technique for estimating water deficit in leaves. - Aust. J. Bio. Sci. 15: 413–428, 1962.

    Article  Google Scholar 

  • Bera S.K., Ajay B.C., Singh A.L.: WRKY and Na+/H- antiporter genes conferring tolerance to salinity in interspecific derivatives of peanut (Arachis hypogaea L.). - Aust. J. Crop Sci. 7: 1173–1180, 2013.

    Google Scholar 

  • Bera S.K., Kamdar J.H., Maurya A.K. et al.: Molecular diversity and association of simple sequence repeat markers with bud necrosis disease in interspecific breeding lines and cultivars of peanut (Arachis hypogaea L.). - Aust. J. Crop Sci. 8: 771–780, 2014.

    CAS  Google Scholar 

  • Björkman O., Demming B.: Photon yield of O2 evaluation and chlorophyll fluorescence at 77 K among vascular plants of diverse origins. - Planta 170: 489–504, 1987.

    Article  PubMed  Google Scholar 

  • Cernusak L.A., Ubierna N., Winter K. et al.: Environmental and physiological determinants of carbon isotope discrimination in terrestrial plants. - New Phytol. 200: 950–965, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Craig H.: Isotopic standards for carbon and oxygen and correlation factors for mass-spectrometric analysis of carbondioxide. - Geochim. Cosmochim. Ac. 12: 133–149, 1957.

    Article  CAS  Google Scholar 

  • Davis J.C.: Statistics and Data Analysis in Geology. Pp. 509–523. John Wiley & Sons, New York 1986.

    Google Scholar 

  • Epron D., Godard D., Cornic G. et al.: Limitation of net CO2 assimilation rate by internal resistances to CO2 transfer in the leaves of two tree species (Fagus sylvatica L. and Castanea sativa Mill). - Plant Cell Environ. 18: 45–51, 1995.

    Article  Google Scholar 

  • Farquhar G.D., Richards R.A.: Isotopic composition of plant carbon correlates with water-use efficiency in wheat genotypes. - Aust. J. Plant Phys. 11: 539–552, 1984.

    Article  CAS  Google Scholar 

  • Fiorani F., Schurr U.: Future scenarios for plant phenotyping. - Annu. Rev. Plant Biol. 64: 267–291, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Franks P.J., Beerling D.J.: Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. - P. Natl. Acad. Sci. USA 106: 10343–10247, 2009.

    Article  CAS  Google Scholar 

  • Galmés J., Medrano H., Flexas J.: Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. - New Phytol. 175: 81–93, 2007.

    Article  PubMed  Google Scholar 

  • Gomez K.A., Gomez A.A.: Statistical Procedures for Agriculture Research. Pp. 241–270. John Wiley & Sons, New York 1984.

    Google Scholar 

  • Govindjee: Chlorophyll a fluorescence: A bit of basic and history. - In: Papageorgiou G.C., Govindjee (ed.): Chlorophyll a Fluorescence: A Probe of Photosynthesis. Pp. 1–42. Kluwer Academic, Dordrecht 2004.

    Chapter  Google Scholar 

  • Guo P., Baum M., Varshney R.K. et al.: QTLs for chlorophyll and chlorophyll fluorescence parameters in barley under postflowering drought.–Euphytica 163: 203–214, 2008.

    Article  CAS  Google Scholar 

  • Hubick K.T., Farquhar G.D., Shorter R.: Correlation between water use efficiency and carbon isotope discrimination in diverse peanut (groundnut) germplasm. - Aust. J. Plant Physiol. 13: 803–816, 1986.

    Article  CAS  Google Scholar 

  • Jackson D.A.: Stopping rules in principal components analysis: a comparison of hueristical and statistical approaches. - Ecology 74: 2204–2214, 1993.

    Article  Google Scholar 

  • Kumagai E., Araki T., Kubota F.: Correlation of chlorophyll meter readings with gas exchange and chlorophyll fluorescence in flag leaves of rice (Oryza sativa L.) plants. - Plant Prod. Sci. 12: 50–53, 2009.

    Article  Google Scholar 

  • Lauriano J.A., Lidon F.C., Carvalho C.A. et al.: Drought effects on membrane lipids and photosynthetic activity in different peanut cultivars. - Photosynthetica 38: 7–12, 2000.

    Article  CAS  Google Scholar 

  • Lauriano J.A., Ramalho J.C., Lidon F.C. et al.: Mechanism of energy dissipation in peanut under water stress. - Photosynthetica 44: 404–410, 2006.

    Article  CAS  Google Scholar 

  • Lu J., Pickersgill B.: Isozyme variation and species relationship in peanut and its wild relatives (Arachis L. Leguminosae). - Theor. Appl. Genet. 85: 550–560, 1993.

    Article  CAS  PubMed  Google Scholar 

  • Maxwell K., Johnson G.N.: Chlorophyll fluorescence–a practical guide. - J. Exp. Bot. 51: 659–668, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Michelotto M.D., Barioni W. Jr., de Resender M.D. et al.: Identification of fungus resistant to wild accessions and interspecific hybrids of the genus Arachis. - PLoS ONE: e128811, 2015.

    Google Scholar 

  • Nageswara Rao R.C., Wright G.C.: Stability of the relationship between specific leaf area and carbon isotope discrimination across environments in peanut.–Crop Sci. 34: 98–103, 1994.

    Article  Google Scholar 

  • Nautiyal P.C., Ravindra V., Joshi Y.C.: Gas exchange and leaf water relations in two peanut cultivars of different drought tolerance. - Biol. Plantarum 37: 371–374, 1995.

    Article  Google Scholar 

  • Nautiyal P.C., Ravindra V., Zala P.V. et al.: Enhancement of yield in groundnut following the imposition of transient soil–moisture–deficit stress during the vegetative phase. - Exp. Agr. 35: 371–385, 1999.

    Article  Google Scholar 

  • Nautiyal P.C., Nageswara Rao Rachaputi, Joshi Y.C.: Moisturedeficit- induced changes in leaf water content, leaf carbon exchange rate and biomass production in groundnut cultivars differing in specific leaf area. - Field Crop. Res. 74: 67–79, 2002.

    Article  Google Scholar 

  • Nautiyal P.C., Rajgopal K., Zala P.V. et al.: Evaluation of Wild Arachis species for abiotic stress tolerance: I Thermal stress and leaf water relations. - Euphytica 159: 43–57, 2008.

    Article  Google Scholar 

  • Nautiyal P.C., Ravindra V., Rathnakumar A.L. et al.:. Genetic variations in photosynthetic rate, pod yield and yield components in Spanish groundnut cultivars during three cropping seasons.–Field Crop. Res. 125: 83–91, 2012.

    Article  Google Scholar 

  • Nigam S.N., Aruna R.: Stability of soil plant analytical development (SPAD) chlorophyll meter reading (SCMR) and specific leaf area (SLA) and their association across varying soil moisture stress conditions in groundnut (Arachis hypogaea L.). - Euphytica 160: 111–117, 2008.

    Article  CAS  Google Scholar 

  • Nogués S., Baker N.R.: Effect of drought on photosynthesis in Mediterranean plants grown under enhanced UV-B radiation. - J. Exp. Bot. 51: 1309–1317, 2000.

    Article  PubMed  Google Scholar 

  • O’Neill P.M., Shanahan J.F., Schepers J.: Use of chlorophyll fluorescence assessments to differentiate corn hybrid response to variable water conditions. - Crop Sci. 46: 681–687, 2006.

    Article  Google Scholar 

  • Singh A.L., Nakar R.N., Chakraborty K.: et al.: Physiological efficiency in mini-core peanut germplasm accessions during summer season. - Photosynthetica 52: 627–635, 2014.

    Article  CAS  Google Scholar 

  • Simpson C.E.: Global collaborations find and conserve the irreplaceable genetic resources of wild peanut in South America. - Diversity 7: 59–61, 1991.

    Google Scholar 

  • Sosulski F.W., Imafidon G.I.: Amino acid composition and nitrogen-to-protein conversion factors for amimals and plant foods. - J. Agric. Food Chem. 38: 1351–1356, 1990.

    Article  CAS  Google Scholar 

  • Stefanov D., Terashima I.: Non-photochemical loss in PSII in high-and low-light-grown leaves of Vicia faba quantified by several fluorescence parameters including LNP, Fo/Fm’ a novel parameter. - Physiol. Plantarum 133: 327–338, 2008.

    Article  CAS  Google Scholar 

  • Subhramanyam P., Moss J.P., McDonald D. et al.: Resistance to leaf spot caused by Cercosporidium personatum in wild Arachis species–Plant Disease 69: 951–954, 1985.

    Article  Google Scholar 

  • Upadhyaya, H.D., Dwivedi S., Nadaf H. et al:. Phenotypic diversity and identification of wild Arachis accessions with useful agronomic and nutritional trait.–Euphytica 182: 103–115, 2011.

    Article  Google Scholar 

  • Valls J.F.M.: Collection of Arachis germplasm in Brazil. - Plant Genet. Resour. Newsl. 53: 9–14, 1983.

    Google Scholar 

  • Varshney R.K., Bertioli D.J., Moretzsohn M.C. et al.: The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L.). - Theor. Appl. Genet. 118: 729–739, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Vasfilov S.P.: Analysis of the cause of variability of the dry leaf mass-per-area ratio. - Biol. Bull. Rev. 2: 238–253, 2012.

    Article  Google Scholar 

  • Zhang X., Wan Q., Liu F.Z. et al.: Molecular analysis of the chloroplast Cu/Zn–SOD gene (AhCSD2) in peanut. - Crop J. 3: 246–257, 2015.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. C. Nautiyal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nautiyal, P.C., Rathnakumar, A.L., Kulkarni, G. et al. Evaluation of wild Arachis species for cultivation under semiarid tropics as a fodder crop. Photosynthetica 55, 41–49 (2017). https://doi.org/10.1007/s11099-016-0642-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-016-0642-7

Additional key words

Navigation