Skip to main content
Log in

Differences in the photosynthetic efficiency and photorespiration of co-occurring Euphorbiaceae liana and tree in a Chinese savanna

  • Original papers
  • Published:
Photosynthetica

Abstract

Lianas perform better than co-occurring trees in secondary forests or disturbed areas. Lianas and trees differ strikingly in water use strategy, which may result in a significant difference in photosynthetic light use between both growth forms. However, the difference in the photosynthetic efficiency and light energy dissipation between these two growth forms is poorly understood. Moreover, photorespiration is an important mechanism of photoprotection under conditions of high light. In this study, we used Bridelia stipularis (Linn.) Bl. (liana) and Strophioblachia fimbricalyx Boerl. (tree) in order to measure the response curves of the gas exchange and photosynthetic electron flow to the incident light gradients and intercellular CO2 concentration, as well as the hydraulic conductivity. We tested whether the photochemical efficiency and photorespiration differed between both growth forms. Our results clearly demonstrated that B. stipularis possessed a significantly higher stem and leaf specific hydraulic conductivity, total electron flow, and maximum rate of ribulose-1,5-bisphosphate regeneration compared to the sympatric tree S. fimbricalyx. Correspondingly, B. stipularis exhibited a significantly higher photochemical quenching coefficient and electron flow to photorespiration relative to S. fimbricalyx under saturating light levels. We suggested that photorespiration might play an important role in photoprotection for both species under high light, but particularly for B. stipularis. These findings could enrich our knowledge of the superior photosynthetic and growth performance of lianas over the co-occurring trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AS :

sapwood area

AL :

total leaf area

Chl:

chlorophyll

C i :

intercellular CO2 concentration

gs :

stomatal conductance

HV:

the Huber value

Jc :

electron flow for RuBP carboxylation

Jmax :

maximum rate of RuBP regeneration

Jo :

electron flow for RuBP oxygenation

JT :

total electron transport rate

Kh :

water flow rate through the segment

KL :

leaf specific hydraulic conductivity

Ks :

sapwood specific hydraulic conductivity

LSP:

light saturation point

P N :

net CO2 assimilation rate

qP:

photochemical quenching coefficient

R D :

dark respiration

ROS:

reactive oxygen species

RuBP:

ribulose-1,5-bisphosphate

Vcmax :

maximum rate of RuBP carboxylation

ϕPSII :

actual photochemical efficiency of PSII

References

  • Ackerly D.D.: Functional strategies of chaparral shrubs in relation to seasonal water deficit and disturbance.–Ecol. Monogr. 74: 25–44, 2004.

    Article  Google Scholar 

  • Brodribb T.J., Feild T.S.: Stem hydraulic supply is linked to leaf photosynthetic capacity: evidence from New Caledonian and Tasmanian rainforests.–Plant Cell Environ. 23: 1381–1388, 2000.

    Article  Google Scholar 

  • Brodribb T.J., Holbrook N.M., Gutiérrez M.V.: Hydraulic and photosynthetic co-ordination in seasonally dry tropical forest trees.–Plant Cell Environ. 25: 1435–1444, 2002.

    Article  Google Scholar 

  • Campanello A.I., Gatti M.G., Goldstein G.: Coordination between water-transport efficiency and photosynthetic capacity in canopy tree species at different growth irradiances.–Tree Physiol. 28: 85–94, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Carpentier R.: Influence of high light intensity on photosynthesis: photoinhibition and energy dissipation.–In: Pessarakli, M. (ed.): Handbook of Photosynthesis. Pp. 443–450. Marcel Dekker, New York 1997.

    Google Scholar 

  • Chen Y.J., Bongers F., Cao K.F. et al.: Above-and below-ground competition in high and low irradiance: tree seedling responses to a competing liana Byttneria grandifolia.–J. Trop. Ecol. 24: 517–524, 2008.

    Article  Google Scholar 

  • Chen Y.J., Cao K.F., Schnitzer S. et al.: Water-use advantage for lianas over trees in tropical seasonal forests.–New Phytol. 205: 128–136, 2015.

    Article  PubMed  Google Scholar 

  • Flexas J., Escalona J., Medrano H.: Water stress induces different levels of photosynthesis and electron transport rate regulation in grapevines.–Plant Cell Environ. 22: 39–48, 1999.

    Article  Google Scholar 

  • Genty B., Briantais J.M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.–Biochim. Biophys. Acta 990: 87–92, 1989.

    Article  CAS  Google Scholar 

  • Hao G.Y., Wang A.Y., Liu Z.H. et al.: Differentiation in light energy dissipation between hemiepiphytic and nonhemiepiphytic Ficus species with contrasting xylem hydraulic conductivity.–Tree Physiol. 31: 626–636, 2011.

    Article  PubMed  Google Scholar 

  • Hochberg U., Degu A., Fait A. et al.: Near isohydric grapevine cultivar displays higher photosynthetic efficiency and photorespiration rates under drought stress as compared with near anisohydric grapevine cultivar.–Physiol. Plantarum 147: 443–452, 2013.

    Article  CAS  Google Scholar 

  • Hymus G.J., Snead T.G., Johnson D.P.: Acclimation of photosynthesis and respiration to elevated atmospheric CO2 in two Scrub Oaks.–Glob. Change Biol. 8: 317–328, 2002.

    Article  Google Scholar 

  • Jin Z.Z., Ou X.K.: [Vegetations in the Hot and Dry Valleys along the Yuanjiang, Nujiang, Jinshajiang, and Lanchangjiang Rivers. Kunming.] Pp. 1–10. Yunnan University Press, Kunming 2000.[In Chinese]

    Google Scholar 

  • Krall J.P., Edwards G.E.: Relationship between photosystem II activity and CO2 fixation in leaves.–Physiol. Plantarum 86: 180–187, 1992.

    Article  CAS  Google Scholar 

  • Kramer D.M., Johnson G., Kiirats O. et al.: New fluorescence parameters for the determination of QA redox state and excitation energy fluxes.–Photosynth. Res. 79: 209–218, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Laisk A., Edwards G.E.: Oxygen and electron flow in C4 photosynthesis: Mehler reaction, photorespiration and CO2 concentration in the bundle sheath.–Planta 205: 632–645, 1998.

    Article  CAS  Google Scholar 

  • Leegood R.C., Lea P.J., Adcock M.D. et al.: The regulation and control of photorespiration.–J. Exp. Bot. 46: 1397–1414, 1995.

    Article  CAS  Google Scholar 

  • Long S.P., Bernacchi C.J.: Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error.–J. Exp. Bot. 54: 2393–2401, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Meinzer F.C.: Coordination of vapour and liquid phase water transport properties in plants.–Plant Cell Environ. 25: 265–274, 2002.

    Article  PubMed  Google Scholar 

  • Meinzer F.C.: Functional convergence in plant responses to the environment.–Oecologia 134: 1–11, 2003.

    Article  PubMed  Google Scholar 

  • Murata N., Allakhverdiev S.I., Nishiyama Y.: The mechanism of photoinhibition in vivo: Re-evaluation of the roles of catalase, a-tocopherol, non-photochemical quenching, and electron transport.–BBA-Bioenergetics 1817: 1127–1133, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama Y., Allakhverdiev S.I., Murata N.: Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II.–Physiol. Plantarum 142: 35–46, 2011.

    Article  CAS  Google Scholar 

  • Nishiyama Y., Yamamoto H., Allakhverdiev S.I. et al.: Oxidative stress inhibits the repair of photodamage to the photosynthetic machinery.–EMBO J. 20: 5587–5594, 2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oguchi R., Terashima I., Chow W.S.: The involvement of dual mechanisms of photoinactivation of photosystem II in Capsicum annuum L. plants.–Plant Cell Physiol. 50: 1815–1825, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Oguchi R., Terashima I., Kou J. et al.: Operation of dual mechanisms that both lead to photoinactivation photosystem II in leaves by visible light.–Physiol. Plantarum 142: 47–55, 2011.

    Article  CAS  Google Scholar 

  • Osmond C.: Photorespiration and photoinhibition: some implications for the energetics of photosynthesis.–BBA-Rev. Bioenerg. 639: 77–98, 1981.

    CAS  Google Scholar 

  • Osmond C.B., Grace S.C.: Perspectives on photoinhibition and photorespiration in the field: quintessential inefficiencies of the light and dark reactions of photosynthesis.–J. Exp. Bot. 46: 1351–1362, 1995.

    Article  CAS  Google Scholar 

  • Patiño S., Tyree M.T., Herre E. A.: Comparison of hydraulic architecture of woody plants of differing phylogeny and growth form with special reference to freestanding and hemi-epiphytic Ficus species from Panama.–New Phytol. 129: 125–134, 1995.

    Article  Google Scholar 

  • Prioul J.L., Chattier P.: Partitioning of transfer and carboxylation components of intracellular resistance to photosynthetic CO2 fixation: A critical analysis of the methods used.–Ann. Bot.-London 41: 789–800, 1977.

    Google Scholar 

  • Putz F.E. The natural history of lianas on Barro Colorado Island, Panama.–Ecology 65: 1713–1724, 1984.

    Article  Google Scholar 

  • Santiago L.S., Goldstein G., Meinzer F.C. et al.: Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees.–Oecologia 140: 543–550, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Schnitzer S.A., Bongers F.: Increasing liana abundance and biomass in tropical forests: emerging patterns and putative mechanisms.–Ecol. Lett. 14: 397–406, 2011.

    Article  PubMed  Google Scholar 

  • Schnitzer S.A., Bongers F.: The ecology of lianas and their role in forests.–Trends Ecol. Evol. 17: 223–230, 2002.

    Article  Google Scholar 

  • Schnitzer S.A., Carson W.P.: Lianas suppress tree regeneration and diversity in treefall gaps.–Ecol. Lett. 13: 849–857, 2010.

    Article  PubMed  Google Scholar 

  • Schnitzer S.A., Kuzee M.E., Bongers F.: Disentangling aboveand below-ground competition between lianas and trees in a tropical forest.–J. Ecol. 93: 1115–1125, 2005.

    Article  Google Scholar 

  • Schnitzer S.A.: A mechanistic explanation for global patterns of liana abundance and distribution.–Am. Nat. 166: 262–276, 2005.

    Article  PubMed  Google Scholar 

  • Sperry J.S.: Hydraulic constraints on plant gas exchange.–Agr. Forest. Meteorol. 104: 13–23, 2000.

    Article  Google Scholar 

  • Takahashi S., Bauwe H., Badger M.R.: Impairment of the photorespiratory pathway accelerates photoinhibition of photosystem II by suppression of repair but not acceleration of damage processes in Arabidopsis.–Plant Physiol. 144: 487–494, 2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi S., Milward S.E., Fan D.Y. et al.: How does cyclic electron flow alleviate photoinhibition in Arabidopsis?–Plant Physiol. 149: 1560–1567, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi S., Murata N.: How do environmental stresses accelerate photoinhibition?–Trends Plant Sci. 13: 178–182, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Valentini R., Epron D., De Angelis P. et al.: In situ estimation of net CO2 assimilation, photosynthetic electron flow and photorespiration in Turkey oak (Q. cerris L.) leaves: diurnal cycles under different levels of water supply.–Plant Cell Environ. 18: 631–640, 1995.

    Article  CAS  Google Scholar 

  • Zhang J.L., Meng L.Z., Cao K.F.: Sustained diurnal photosynthetic depression in uppermost-canopy leaves of four dipterocarp species in the rainy and dry seasons: does photorespiration play a role in photoprotection?–Tree Physiol. 29: 217–228, 2009.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K.-F. Cao.

Additional information

Acknowledgments: This study was funded by the National Science Foundation of China (No. 31470470, 31570406) and the Joint Foundation of the Natural Science of China and the Natural Science of the Yunnan Province (No. U1202234). We are very grateful to the Yuanjiang Research Station for Savanna Ecosystems, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences for providing the meteorological data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, SB., Zhang, JL. & Cao, KF. Differences in the photosynthetic efficiency and photorespiration of co-occurring Euphorbiaceae liana and tree in a Chinese savanna. Photosynthetica 54, 438–445 (2016). https://doi.org/10.1007/s11099-016-0188-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-016-0188-8

Additional key words

Navigation