Skip to main content
Log in

Measurements of reflectance and fluorescence spectra for nondestructive characterizing ripeness of grapevine berries

  • Original Papers
  • Published:
Photosynthetica

Abstract

In vivo reflectance and fluorescence spectra from berry skins of a white (Riesling) and red (Cabernet Sauvignon) grapevine variety were measured during a ripening season with a new CMOS radiometer instrument. Classical reference measurements were also carried out for a sugar content of the berry juice [°Brix] and pigment contents (chlorophyll a and b, carotenoids, anthocyanins) from methanol extracts of the berry skin. We showed that the colours and the spectra analysed from them could be taken as an unambiguous indicator of grapevine ripening. Reflectance spectra, which were affected by the content of pigments (chlorophylls and anthocyanins), effects of surface (wax layers), and tissue structure (cell size) of the berries well correlated (R 2 = 0.89) with the °Brix measurements of the berries. The fast data acquisition of both reflectance and fluorescence spectra in one sample with our radiometer instrument made it superior over the time-consuming, traditional, and mostly destructive chemical analysis used in vine-growing management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Anth:

anthocyanins

Car:

carotenoids

Chl:

chlorophyll

NDVI:

normalized difference vegetation index

References

  • Abu-Khalaf N., Bennedsen B.S.: Near infrared (NIR) technology and multivariate data analysis for sensing taste attributes of apples. — Int. Agrophys. 18: 203–211, 2004.

    Google Scholar 

  • Agati G., Pinelli P., Ebner S.C. et al.: Nondestructive evaluation of anthocyanins in olive (Olea europaea) fruits by in situ chlorophyll fluorescence spectroscopy. — J. Agr. Food Chem. 53: 1354–1363, 2005.

    Article  CAS  Google Scholar 

  • Agati G., Meyer S., Matteini P., Cerovic Z.G.: Assessment of anthocyanins in grape (Vitis vinifera L.) berries using a noninvasive chlorophyll fluorescence method. — J. Agr. Food Chem. 55: 1053–1061, 2007.

    Article  CAS  Google Scholar 

  • Ben Ghozlen N., Cerovic Z.G., Germain C. et al.: Nondestructive optical monitoring of grape maturation by proximal sensing. — Sensors 10: 10040–10068, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  • Buschmann C.: Variability and application of the chlorophyll fluorescence emission ratio red/far-red of leaves. — Photosynth. Res. 92: 261–271, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Buschmann C., Nagel E.: In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation. — Int. J. Remote Sens. 14: 711–722, 1993.

    Article  Google Scholar 

  • Buschmann C., Lenk S., Lichtenthaler H.K.: Reflectance spectra and images of green leaves with different tissue structure and chlorophyll content. — Isr. J. Plant Sci. 60: 49–64, 2012.

    Article  Google Scholar 

  • Cao F., Wu D., He Y.: Soluble solids content and pH prediction and varieties discrimination of grapes based on visible-near infrared spectroscopy. — Comput. Electron. Agr. 71S: S15–S18, 2010.

    Article  Google Scholar 

  • Coombe B.G.: Distribution of solutes within the developing grape berry in relation to its morphology. — Am. J. Enol. Viticult. 38: 120–127, 1987.

    CAS  Google Scholar 

  • Coombe B.G., McCarthy M.G.: Dynamics of grape berry growth and physiology of ripening. — Aust. J. Grape Wine R. 6: 131–135, 2000.

    Article  Google Scholar 

  • Cozzolino D., Dambergs R.G., Janik L. et al.: Analysis of grapes and wine by near infrared spectroscopy. — J. Near Infrared Spec. 14: 279–289, 2006.

    Article  CAS  Google Scholar 

  • Granitto P.M., Navone H.D., Verdes P.F., Ceccatto H.A.: Weed seeds identification by machine vision. — Comput. Electron. Agr. 33: 91–103, 2002.

    Article  Google Scholar 

  • Granitto P.M., Verdes P.F., Ceccatto H.A.: Large-scale investigation of weed seed identification by machine vision. — Comput. Electron. Agr. 47: 15–24, 2005.

    Article  Google Scholar 

  • Harris J.M., Kriedemann P.E., Possingham J.V.: Anatomical aspects of grape berry development. — Vitis 7: 106–119, 1968.

    Google Scholar 

  • Jackson R.S.: Wine Science. Principles and Applications, 3rd ed. Pp. 776. Elsevier, Amsterdam 2008.

    Google Scholar 

  • Jamshidi B., Minaei S., Mohajerani E., Ghassemian H.: Reflectance Vis/NIR spectroscopy for nondestructive taste characterization of Valencia oranges. — Comput. Electron. Agr. 85: 64–69, 2012.

    Article  Google Scholar 

  • Jones H.G., Vaugham R.A.: Remote Sensing of Vegetation. — Principles, Techniques and Applications. Pp. 400. Oxford University Press, Oxford, 2010.

    Google Scholar 

  • Kennedy J.A., Hayasaka Y., Vidal S. et al.: Composition of grape skin proanthocyanidins at different stages of berry development. — J. Agr. Food Chem. 49: 5348–5355, 2001.

    Article  CAS  Google Scholar 

  • Kolb C.A., Wirth E., Kaiser W.M. et al.: Non-invasive evaluation of the degree of ripeness in grape berries (Vitis vinifera L. cv. Bacchus and Silvaner) by chlorophyll fluorescence. — J. Agr. Food Chem. 54: 299–305, 2006.

    Article  CAS  Google Scholar 

  • Kondo N., Ahmad U., Monta M., Murase H.: Machine vision based quality evaluation of Iyokan orange fruit using neural networks. — Comput. Electron. Agr. 29: 135–147, 2000.

    Article  Google Scholar 

  • Kurtulmus F., Lee W.S., Vardar A.: Green citrus detection using’ eigenfruit’, color and circular Gabor texture features under natural outdoor conditions. — Comput. Electron. Agr. 78: 140–149, 2011.

    Article  Google Scholar 

  • le Maire G., François C., Dufrêne E.: Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. — Remote Sens. Environ. 89: 1–28, 2004.

    Article  Google Scholar 

  • Lenk S., Buschmann C., Pfündel E.: In vivo assessing flavonols in white grape berries (Vitis vinifera L. cv. Pinot Blanc) of different degrees of ripeness using chlorophyll fluorescence imaging. — Funct. Plant Biol. 34: 1092–1104, 2007.

    Article  CAS  Google Scholar 

  • Lichtenthaler H.K.: Chlorophylls and carotenoids, the pigments of photosynthetic biomembranes. — Methods Enzymol. 148: 350–382, 1987.

    Article  CAS  Google Scholar 

  • Malacara D.: Color Vision and Colorimetry: Theory and Applications. Pp. 176. SPIE Press, Bellingham 2002.

    Google Scholar 

  • Mebatsion H.K., Paliwal J., Jayas D.S.: Automatic classification of non-touching cereal grains in digital images using limited morphological and color features. — Comput. Electron. Agr. 90: 99–105, 2013.

    Article  Google Scholar 

  • Meyer G.E., Neto J.C., Jones D.D., Hindman T.W.: Intensified fuzzy clusters for classifying plant, soil, and residue regions of interest from color images. — Comput. Electron. Agr. 42: 161–180, 2004.

    Article  Google Scholar 

  • Mollazade K., Omid M., Arefi A.: Comparing data mining classifiers for grading raisins based on visual features. — Comput. Electron. Agr. 84: 124–131, 2012.

    Article  Google Scholar 

  • Onyango C.M., Marchant J.A.: Segmentation of row crop plants from weeds using colour and morphology. — Comput. Electron. Agr. 39: 141-155, 2003.

  • Papageorgiou G.C., Govindjee: Chlorophyll a Fluorescence: A Signature of Photosynthesis. Pp. 820. Springer, Dordrecht 2004.

    Book  Google Scholar 

  • Payne A.B., Walsh K.B., Subedi P.P., Jarvis D.: Estimation of mango crop yield using image analysis — Segmentation method. — Comput. Electron. Agr. 91: 57–64, 2013.

    Article  Google Scholar 

  • Pieczywek P.M., Zdunek A.: Automatic classification of cells and intercellular spaces of apple tissue. — Comput. Electron. Agr. 81: 72-78, 2012.

  • Possner D.R.E., Kliewer W.M.: The localization of acids, sugars, potassium and calcium in developing grape berries. — Vitis 24: 229–240, 1985.

    CAS  Google Scholar 

  • Rodríguez-Pulido F.J., Gómez-Robledo L., Melgosa M. et al.: Ripeness estimation of grape berries and seeds by image analysis. — Comput. Electron. Agr. 82: 128–133, 2012.

    Article  Google Scholar 

  • Romeyer F.M., Macheix J.J., Goiffon J.P. et al.: The browning capacity of grapes. 3. Changes and importance of hydroxycinnamic acid-tartaric acid esters during development and maturation of the fruit.” — J. Agr. Food Chem. 31: 346–349, 1983.

    Article  CAS  Google Scholar 

  • Rouse J.W.J., Haas H.R., Schell A.J., Deering W.D.: Monitoring vegetation systems in the Great Plains with ERTS. — In: Freden S.C., Mercanti E.P., Becker M.A. (ed.): 3rd Earth Resources Technology Satellite-1 Symposium, Volume I: Technical Presentations. NASA SP-351. Pp. 309–317, NASA, Washington, D.C. 1974.

    Google Scholar 

  • Ruiz-Altisent M., Ruiz-Garcia L., Moreda G.P. et al.: Sensors for product characterization and quality of specialty crops — A review. — Comput. Electron. Agr. 74: 176–194, 2010.

    Article  Google Scholar 

  • Rustioni L., Basilico R., Fiori S. et al.: Grape colour phenotyping: development of a method based on the reflectance spectrum. — Phytochem. Anal. 24: 453–459, 2013.

    Article  CAS  PubMed  Google Scholar 

  • Rustioni L., Rocchi L., Guffanti E. et al.: Characterization of Grape (Vitis vinifera L.) Berry Sunburn Symptoms by Reflectance. — J. Agric. Food Chem., DOI: 10.1021/jf405772f, 2014.

  • Steele M.R., Gitelson A.A., Rundquist D.C., Merzlyak M.N.: Nondestructive estimation of anthocyanin content in grapevine leaves. — Am. J. Enol. Viticult. 60: 87–92, 2009.

    CAS  Google Scholar 

  • Tian Q., Giusti M.M., Stoner G.D.: Screening for anthocyanins using high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry with precursor-ion analysis, product-ion analysis, common-neutralloss analysis, and selected reaction monitoring. — J. Chromatogr. A 1091: 72–82, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Tremblay N., Wang Z., Cerovic Z.G.: Sensing crop nitrogen status with fluorescence indicators. A review. — Agron. Sustain. Dev. 32: 451–464, 2012

    Article  CAS  Google Scholar 

  • Valeur B., Berberan-Santos M.: Molecular Fluorescence -Principles and Applications. 2nd ed. Pp. 592. Wiley-VCH, Weinheim, 2012

    Book  Google Scholar 

  • Zhang H., Lan Y., Suh C.P.-C. et al.: Fusion of remotely sensed data from airborne and ground-based sensors to enhance detection of cotton plants. — Comput. Electron. Agr. 93: 55–59, 2013.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Navrátil.

Additional information

Acknowledgements: This project was supported by EU, Commission of the European Communities, 7th Framework program FP7-SME-2010-1-262011. The manuscript has been written during the stay of the first author at the Karlsruhe Institute of Technology (KIT) partially financed by the project “BioNetwork” (reg. number: CZ.1.07/2.4.00/31.0025). We would like also to acknowledge the help with measurements and data processing by Philipp Epple, Zishang Jiang, Vanessa Kunz, Marie Opálková, and Gregor Ziegler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navrátil, M., Buschmann, C. Measurements of reflectance and fluorescence spectra for nondestructive characterizing ripeness of grapevine berries. Photosynthetica 54, 101–109 (2016). https://doi.org/10.1007/s11099-015-0163-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-015-0163-9

Additional key words

Navigation