Skip to main content

Advertisement

Log in

Physiological and biochemical responses to saline-alkaline stress in two halophytic grass species with different photosynthetic pathways

  • Original Papers
  • Published:
Photosynthetica

Abstract

We examined the physiological and biochemical responses of two halophytic grasses with different photosynthetic pathways, Puccinellia tenuiflora (C3) and Chloris virgata (C4), to saline-alkaline stresses. Plants were grown at different Na2CO3 concentrations (from 0 to 200 mM). Low Na2CO3 (< 12.5 mM) enhanced seed germination and plant growth, whereas high Na2CO3 concentrations (> 100 mM) reduced seed germination by 45% in P. tenuiflora and by 30% in C. virgata. Compared to C. virgata, P. tenuiflora showed lower net photosynthesis, stomatal conductance, intercellular CO2 concentration, and water-use efficiency under the same treatment. C. virgata exhibited also relatively higher ATP content, K+ concentration, and the K+/Na+ ratio under the stress treatments implying that salt tolerance may be the main mechanism for salt resistance in this species. Our results demonstrated that the C. virgata was relatively more resistant to saline-alkaline stress than the co-occurring P. tenuiflora; both two species adapt to their native saline-alkaline habitat by different physiological mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C i :

intercellular CO2 concentration

g s :

stomatal conductance

E :

transpiration rate

EC:

electrical conductivity

P N :

net photosynthetic rate

RDM:

relative dry mass

REL:

rate of electrolyte leakage

RPH:

relative plant height

SGP:

seed germination percentage

WUE:

water-use efficiency

References

  • Bandurska H.: Does proline accumulated in leaves of water deficit stressed barley plants confine cell membrane injury? I. Free proline accumulation and membrane injury index in drought and osmotically stressed plants. — Acta Physiol. Plant. 22: 409–415, 2000.

    Article  CAS  Google Scholar 

  • Barkla B.J., Zingarelli L., Blumwald E., Smith J.A.C.: Tonoplast Na+/H+ antiport activity and its energization by the vacuolar H+-ATPase in the halophytic plant Mesembryanthemum crystallinum L. — Plant Physiol. 109: 549–556, 1995.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Campbell S.A., Nishio J.N.: Ion deficiency studies of sugar beet using an improved sodium bicarbonate-buffered hydroponics growth system. — J. Plant Nutr. 23: 741–757, 2000.

    Article  CAS  Google Scholar 

  • Cheeseman J.M.: Mechanisms of salinity tolerance in plants. — Plant Physiol. 87: 547–550, 1988.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen L., Wang R.Z.: Anatomical and physiological divergences and compensatory effects in two Leymus chinensis (Poaceae) ecotypes in Northeast China. — Agr. Ecosyst. Environ. 134: 46–52, 2009.

    Article  Google Scholar 

  • Cornic G.: Drought stress inhibits photosynthesis by decreasing stomatal aperture — not by affecting ATP synthesis. — Trends Plant Sci. 5: 187–188, 2000.

    Article  Google Scholar 

  • Cuin T.A., Bose J., Stefano G. et al.: Assessing the role of root plasma membrane and tonoplast Na+/H+ exchangers in salinity tolerance in wheat: in planta quantification methods. — Plant Cell Environ. 34: 947–961, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Degenhardt B., Gimmler H., Hose E., Hartung W.: Effect of alkaline and saline substrates on ABA contents, distribution and transport in plant roots. — Plant Soil 225: 83–94, 2000.

    Article  CAS  Google Scholar 

  • Du X.G.., Zheng H.Y., Liu C.D.: [A preliminary study on the main plant communities in the saline soils of Songnen plain.] — Acta Phytoecol. Sin. 18: 41–49, 1994. [In Chinese]

    Google Scholar 

  • Flowers T.J., Colmer T.D.: Salinity tolerance in halophytes. — New Phytol. 179: 945–963, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Garthwaite A.J., von Bothmer R., Colmer T.D.: Salt tolerance in wild Hordeum species is associated with restricted entry of Na+ and Cl into the shoots. — J. Exp. Bot. 56: 2365–2378, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Ge Y., Li J.D.: Studies on the characteristics of K+, Na+ content in Aneurolepidium chinense grassland of Northeast China. — Acta Bot. Sin. 34: 169–175, 1992.

    CAS  Google Scholar 

  • Irigoyen J.J., Emerich D.W., Sánchez-Díaz M.: Water-stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. — Physiol. Plant. 84: 55–60, 1992.

    Article  CAS  Google Scholar 

  • Lawlor D.W., Cornic G.: Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. — Plant Cell Environ. 25: 275–294, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Li J.D., Zheng H.Y. (ed.): [Improvement of Saline Grasslands in the Songnen Plain and Ecological Mechanisms.] Pp. 270. Science Press, Beijing 1997. [In Chinese]

    Google Scholar 

  • Martínez J.P., Kinet J.M., Bajji M., Lutts S.: NaCl alleviates polyethylene glycol-induced water stress in halophyte species Atriplex halimus L. — J. Exp. Bot. 56: 2421–2431, 2005.

    Article  PubMed  Google Scholar 

  • Munns R., James R.A., Läuchli A.: Approaches to increasing the salt tolerance of wheat and other cereals. — J. Exp. Bot. 57: 1025–1043, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Peng Y.H., Zhu Y.F., Mao Y.Q. et al.: Alkali grass resists salt stress through high [K+] and an endodermis barrier to Na+. — J. Exp. Bot. 55: 939–949, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Shi D.C., Wang D.L.: Effects of various salt-alkaline mixed stresses on Aneurolepidium chinense (Trin.) Kitag. — Plant Soil 271: 15–26, 2005.

    Article  CAS  Google Scholar 

  • Shi D.C., Yin L.J.: Difference between salt (NaCl) and alkaline (Na2CO3) stresses on Puccinellia tenuiflora (Griseb.) Scrib. et Merr. plants. — Acta Bot. Sin. 35: 144–149, 1993.

    CAS  Google Scholar 

  • Tezara W., Mitchell V.J., Driscoll S.D., Lawlor D.W.: Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. — Nature 401: 914–917, 1999.

    Article  CAS  Google Scholar 

  • Wang H.F., Zhang J.H., Liang J.S., Yin W.L.: Responses of woody plant root and xylem sap ATP to soil drying. — Chinese Sci. Bull. 44: 1172–1178, 1999.

    Article  CAS  Google Scholar 

  • Wang R.Z.: Plant functional types and their ecological responses to salinization in saline grasslands, Northeastern China. — Photosynthetica 42: 511–519, 2004.

    Article  Google Scholar 

  • Ward J.M., Hirschi K.D., Sze H.: Plants pass the salt. — Trends Plant Sci. 8: 200–201, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Xiong, Y., Li Q.D. (ed.): [China Soil.] Pp. 643. Science Press, China 1978. [In Chinese]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Z. Wang.

Additional information

Acknowledgements: We would like to thank Y.Q. Yuan for being a help to the experiment. The work was supported by National Scientific Foundation of China (31170304, 31070228).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, C.Y., Wang, X.Z., Chen, L. et al. Physiological and biochemical responses to saline-alkaline stress in two halophytic grass species with different photosynthetic pathways. Photosynthetica 53, 128–135 (2015). https://doi.org/10.1007/s11099-015-0094-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-015-0094-5

Additional key words

Navigation