Skip to main content
Log in

Morphological, physiological, and biochemical responses of Populus euphratica to soil flooding

  • Original Papers
  • Published:
Photosynthetica

Abstract

The riparian forests along the Tarim River, habitats for Populus euphratica establishment, are subjected to frequent flooding. To elucidate adaptive strategies that enable this species to occupy the riparian ecosystem subjected to seasonal or permanent water-logging, we examined functional characteristics of plant growth, xylem water relations, leaf gas exchange, chlorophyll (Chl) content and fluorescence, soluble sugar and malondialdehyde (MDA) content in P. euphratica seedlings flooded for 50 d. Although flooded seedlings kept absorbing carbon throughout the experiment, their shoot and root growth rates were lower than in non-flooded seedlings. The reduced leaf gas exchange and quantum efficiency of PSII of flooded seedlings resulted possibly from the reduction in total Chl content. Content of soluble sugar and malondialdehyde in leaves were higher in flooded than in control seedlings. Soil flooding induced hypertrophy of lenticels and increased a stem diameter. These responses were responsible for species survival as well as its success in this seasonally flooded riparian zone. Our results indicate that P. euphratica is relatively flood-tolerant due to a combination of morphological, physiological, and biochemical adjustments, which may support its dominance in the Tarim riparian forest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C i :

intercellular CO2 concentration

Chl:

chlorophyll

E :

transpiration rate

Fm :

maximal fluorescence in dark adapted state

Fm′:

maximal fluorescence in light-adapted state

Fs :

steady-state fluorescence yield

Fv/Fm :

maximal quantum yield of PSII photochemistry

Fv′/Fm′:

energy harvesting efficiency of PSII

F0 :

minimal fluorescence in dark-adapted state

F0′:

minimal fluorescence in light-adapted state

FM:

fresh mass

g s :

stomatal conductance

MDA:

malondialdehyde

P N :

net photosynthetic rate

qP :

photochemical quenching coefficient

ΦPSII :

effective quantum yield of PSII photochemistry

Ψmd :

midday xylem water potential

References

  • Amlin N.A., Rood S.B.: Inundation tolerances of riparian Willows and Cottonwoods. — J. Am. Water Resour. Assoc. 37: 1709–1720, 2001.

    Article  Google Scholar 

  • Arbona V., Hossain Z., López-Climent M.F. et al.: Antioxidant enzymatic activity is linked to waterlogging stress tolerance in citrus. — Physiol. Plantarum 132: 452–466, 2008.

    Article  CAS  Google Scholar 

  • Armbrüster N., Müller E., Parolin P.: Contrasting responses of two Amazonian floodplain trees to hydrological changes. — Ecotropica 10: 73–84, 2004.

    Google Scholar 

  • Arnon D.I.: Copper enzymes in isolated chloroplasts polyphenol oxidase in Beta vulgaris L. — Plant Physiol. 24: 1–15, 1949.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Black R.A.: Water relations of Quercus palustris: field measurements on an experimentally flooded stand. — Oecologia 64: 14–20, 1984.

    Article  Google Scholar 

  • Blom C.W.P.M., Voesenek L.A.C.J.: Flooding: the survival strategies of plants. — Trends Ecol. Evol. 11: 290–295, 1996.

    Article  CAS  PubMed  Google Scholar 

  • Bradford K.J.: Effect of soil flooding on leaf gas exchange of plants. — Plant Physiol. 73: 475–479, 1983.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cao F.L., Conner W.H.: Selection of flood-tolerant Populus deltoides clones for reforestation projects in China. — Forest Ecol. Manag. 117: 211–220, 1999.

    Article  Google Scholar 

  • Casanova M.T., Brock M.A.: How do depth, duration and frequency of flooding influence the establishment of wetland plant communities? — Plant Ecol. 147: 237–250, 2000.

    Article  Google Scholar 

  • Corenblit D., Steiger J., Gurnell A.M. et al.: Plants intertwine fluvial landform dynamics with ecological succession and natural selection: a niche construction perspective for riparian systems. — Global Ecol. Biogeogr. 18: 507–520, 2009.

    Article  Google Scholar 

  • Crawford R.M.M., Braendle R.: Oxygen deprivation stress in a changing environment. — J. Exp. Bot. 47: 145–159, 1996.

    Article  CAS  Google Scholar 

  • Dreyer E.: Compared sensitivity of seedlings from 3 woody species (Quercus robur L., Quercus rubra L., and Fagus silvatica L.) to water-logging and associated root hypoxia: effects on water relations and photosynthesis. — Ann. Forest Sci. 51: 417–429, 1994.

    Article  Google Scholar 

  • Du K.B., Xu L., Wu H. et al.: Ecophysiological and morphological adaption to soil flooding of two poplar clones differing in flood-tolerance. — Flora 207: 96–106, 2012.

    Article  Google Scholar 

  • Evans D.E.: Aerenchyma formation. — New Phytol. 161: 35–49, 2003.

    Article  Google Scholar 

  • Fernández M.D., Pieters A., Donoso C. et al.: Seasonal changes in photosynthesis of trees in the flooded forest of Mapire river. — Tree Physiol. 19: 79–85, 1999.

    Article  PubMed  Google Scholar 

  • Fernández M.D.: Changes in photosynthesis and fluorescence in response to flooding emerged and submerged leaves of Pouteria orinocoensis. — Photosynthetica 44: 32–38, 2006.

    Article  Google Scholar 

  • Folzer H., Dat J.F., Capelli N. et al.: Response to flooding of sessile oak: An integrative study. — Tree Physiol. 26: 759–766, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Friedman J.M., Lee V.J.: Extreme floods, channel change, and riparian forests along ephemeral streams. — Ecol. Monogr. 72: 409–425, 2002.

    Article  Google Scholar 

  • Genty B., Briantais J.M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron-transport and quenching of chlorophyll fluorescence. — Biochim. Biophys. Acta. 990: 87–92, 1989.

    Article  CAS  Google Scholar 

  • Gibberd M.R., Gray J.D., Cocks P.S. et al.: Waterlogging tolerance among a diverse range of Trifolium accessions is related to root porosity, lateral root formation and “aerotropic rooting’. — Ann. Bot.-London 88: 579–589, 2001.

    Article  Google Scholar 

  • Gravatt D.A., Kirby C.J.: Patterns of photosynthesis and starch allocation in seedlings of four bottomland hardwood tree species subjected to flooding. — Tree Physiol. 18: 411–417, 1998.

    Article  PubMed  Google Scholar 

  • Heath R.L., Packer L.: Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. — Arch. Biochem. Biophys. 125: 189–198, 1968.

    Article  CAS  PubMed  Google Scholar 

  • Hossain Z., Mandal A.K.A., Datta S.K. et al.: Isolation of a NaCltolerant mutant of Chrysanthemum morifolium by gamma radiation: in vitro mutagenesis and selection by salt stress. — Funct. Plant Biol. 33: 91–101, 2006.

    Article  CAS  Google Scholar 

  • Jackson M.B., Drew M.C.: Effect of flooding on growth and metabolism of herbaceous plants. — In: Kozlowski T.T. (ed.): Flooding and Plant Growth. Pp. 47–128. Academic Press, New York 1984.

    Chapter  Google Scholar 

  • Joly C.A.: Flooding tolerance: a reinterpretation of Crawford’s metabolic theory. — P. Roy. Soc. Edinb. B 102: 343–354, 1994.

    Google Scholar 

  • Kozlowski T.T.: Responses of woody plants to flooding and salinity. — Tree Physiol. Monogr. 1: 1–29, 1997.

    Google Scholar 

  • Kozlowski T.T.: Physiological-ecological impacts of flooding on riparian forest ecosystems. — Wetlands 22: 550–561, 2002.

    Article  Google Scholar 

  • Kozlowski T.T., Pallardy S.G.: Acclimation and adaptive responses of woody plants to environmental stresses. — Bot. Rev. 68: 270–334, 2002.

    Article  Google Scholar 

  • Kreuzwieser J., Papadopoulou E., Rennenberg H.: Interaction of flooding with carbon metabolism of forest trees. — Plant Biol. 6: 299–306, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Li X.L., Li N., Yang J. et al.: Morphological and photosynthetic responses of riparian plant Distylium chinense seedlings to simulated Autumn and Winter flooding in Three Gorges Reservoir Region of the Yangtze River, China. — Acta. Ecol. Sin. 31: 31–39, 2011.

    Article  Google Scholar 

  • Loucks W.L., Keen R.A.: Submersion tolerance of selected seedling trees. — J. Forest. 71: 496–497, 1973.

    Google Scholar 

  • Maxwell K., Johnson G.N.: Chlorophyll fluorescence — a practical guide. — J. Exp. Bot. 51: 659–668, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Mielke M.S., de Almeida A.A.F.D., Gomes F.P. et al.: Effects of soil flooding on leaf gas exchange and growth of two neotropical pioneer tree species. — New Forest 29: 161–168, 2005.

    Article  Google Scholar 

  • Mielke M.S., de Almeida A.A.F.D., Gomes F.P. et al.: Leaf gas exchange, chlorophyll fluorescence and growth responses of Genipa americana seedlings to soil flooding. — Environ. Exp. Bot. 50: 221–231, 2003.

    Article  CAS  Google Scholar 

  • Mommer L., Visser E.J.: Underwater photosynthesis in flooded terrestrial plants: a matter of leaf plasticity. — Ann. Bot. 96: 581–589, 2005.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Naidoo G., Naidoo S.: Waterlogging responses of Sporobolus virginicus (L.) Kunth. — Oecologia 90: 445–450, 1992.

    Article  Google Scholar 

  • Nuñez-Elisea R., Schaffer B., Fisher J.B. et al.: Influence of flooding on net CO2 assimilation, growth and stem anatomy of Annona species. — Ann. Bot.-London 84: 771–780, 1999.

    Article  Google Scholar 

  • Pallas J.E., Kays S.J.: Inhibition of photosynthesis by ethylene — a stomatal effect. — Plant Physiol. 70: 598–601, 1982.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Parolin P.: Submergence tolerance vs. escape from submergence: two strategies of seedling establishment in Amazonian floodplains. — Environ. Exp. Bot. 48: 177–186, 2002.

    Article  Google Scholar 

  • Pezeshki S.R.: Plant response to flooding. — In: Wilkinson R.E. (ed.): Plant-Environment Interactions. Pp. 289–321. Marcel Dekker, New York 1994.

    Google Scholar 

  • Pezeshki S.R.: Wetland plant responses to soil flooding. — Environ. Exp. Bot. 46: 299–312, 2001.

    Article  Google Scholar 

  • Pezeshki S.R., DeLaune R.D., Kludze H.K. et al.: Photosynthesis and growth responses of cattail (Typha domingensis) and sawgrass (Cladium jamaicense) to soil redox conditions. — Aquat. Bot. 54: 25–35, 1996a.

    Article  Google Scholar 

  • Pezeshki S.R., Pardue J.H., DeLaune R.D.: Leaf gas exchange and growth of flood-tolerant and flood-sensitive tree species under low soil redox conditions. — Tree Physiol. 16: 453–458, 1996b.

    Article  PubMed  Google Scholar 

  • Qiu N.W., Lu Q.T., Lu C.M.: Photosynthesis, photosystem II efficiency and the xanthophylls cycle in the salt-adapted halophyte Atriplex centralasiatica. — New Phytol. 159: 479–486, 2003.

    Article  CAS  Google Scholar 

  • Rengifo E., Tezara W., Herrera A.: Water relations, chlorophyll a fluorescence, and contents of saccharides in tree species of a tropical forest in response to flood. — Photosynthetica 43: 203–210, 2005.

    Article  CAS  Google Scholar 

  • Sena Gomes A.R., Kozlowski T.T.: Growth responses and adaptations of Fraxinus pennsylvanica seedlings to flooding. — Plant Physiol. 66: 267–271, 1980.

    Article  Google Scholar 

  • Sena Gomes A.R., Kozlowski T.T.: Physiological and growth responses to flooding of seedlings of Hevea brasiliensis. — Biotropica 20: 286–293, 1988.

    Article  Google Scholar 

  • Schaffer B., Andersen P.C., Ploetz R.C.: Responses of fruit crops to flooding. — Hort. Rev. 13: 257–313, 1992.

    Google Scholar 

  • Schöngart J., Piedade M.T.F., Ludwigshausen S. et al.: Phenology and stem-growth periodicity of tree species in Amazonian floodplain forests. — J. Trop. Ecol. 18: 581–597, 2002.

    Article  Google Scholar 

  • Schreiber U., Bilger W., Neubauer C.: Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of In Vivo photosynthesis. — In: Schulze E.D., Caldwell M.M. (ed.): Ecophysiology of Photosynthesis. Pp. 49–70. Springer, Berlin 1994.

    Google Scholar 

  • Sij J.W., Swanson C.A.: Effect of petiole anoxia on phloem transport in squash. — Plant Physiol. 51: 368–371, 1973.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stromberg J.C., Tluczek M.G.F., Hazelton A.F. et al.: A century of riparian forest expansion following extreme disturbance: spatiotemporal change in Populus/Salix/Tamarix forests along the Upper San Pedro River, Arizona, USA. — Forest Ecol. Manag. 259: 1181–1189, 2010.

    Article  Google Scholar 

  • Sun O.J., Sweet G.B., Whitehead D. et al.: Physiological responses to water stress and water-logging in Nothofagus species. — Tree Physiol. 15: 629–638, 1995.

    Article  PubMed  Google Scholar 

  • Tsukahara H., Kozlowski T.T.: Importance of adventitious roots to growth of flooded Platanus occidentalis seedlings. — Plant Soil. 88: 123–132, 1985.

    Article  Google Scholar 

  • Upham B.L., Jahnke L.S.: Photooxidative reactions in chloroplast thylakoids: Evidence for a Fenton-type reaction promoted by superoxide or ascorbate. — Photosynth. Res. 8: 235–247, 1986.

    Article  CAS  PubMed  Google Scholar 

  • Voesenek L.A., Colmer T.D., Pierik R. et al.: How plants cope with complete submergence. — New Phytol. 170: 213–226, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Vu J.C.V., Yelenosky G.: Photosynthetic responses of citrus trees to soil flooding. — Physiol. Plantarum 81: 7–14, 1991.

    Article  CAS  Google Scholar 

  • Waldhoff D., Furch B., Junk W.J.: Fluorescence parameters, chlorophyll concentration, and anatomical features as indicators for flood adaptation of an abundant tree species in Central Amazonia: Symmeria paniculata. — Environ. Exp. Bot. 48: 225–235, 2002.

    Article  CAS  Google Scholar 

  • Waldhoff D., Junk W.J., Furch B.: Responses of three central Amazonian tree species to drought and flooding under controlled conditions. — Int. J. Ecol. Environ. 24: 237–252, 1998.

    Google Scholar 

  • Wample R.L., Davis R.W.: Effect of flooding on starch accumulation in chloroplasts of sunflower (Helianthus annuus L.). — Plant Physiol. 73: 195–198, 1983.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wample R.L., Thornton R.K.: Differences in the responses of sunflower (Helianthus annuus) subjected to flooding and drought stress. — Physiol. Plantarum 61: 611–616, 1984.

    Article  Google Scholar 

  • Wang X.K.: [The Principle and Technology of Plant Physiology and Biochemistry Experiment.] Pp. 130–134, 202, 280. Higher Education Press, Beijing 2006. [In Chinese]

    Google Scholar 

  • Yordanova R.Y., Popova L.P.: Flooding-induced changes in photosynthesis and oxidative status in maize plants. — Acta Physiol. Plant. 29: 535–541, 2007.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Y. Zhao.

Additional information

Acknowledgements: This study was supported by the National Natural Science Foundation (41171095, 41101100, and 41171037), the National Project (No. 2013BAC10B01) of China.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, B., Zhao, C.Y., Li, J. et al. Morphological, physiological, and biochemical responses of Populus euphratica to soil flooding. Photosynthetica 53, 110–117 (2015). https://doi.org/10.1007/s11099-015-0088-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-015-0088-3

Additional key words

Navigation