Skip to main content
Log in

The importance of blue light for leaf area expansion, development of photosynthetic apparatus, and chloroplast ultrastructure of Cucumis sativus grown under weak light

  • Original Papers
  • Published:
Photosynthetica

Abstract

The objective of this study was to evaluate the significance of blue light (B) in the growth and photosynthetic capacity of cucumber. Gas exchange, chlorophyll (Chl) fluorescence kinetics, chloroplast ultrastructure, and leaf growth were investigated to explore the influence of three different light qualities of light emitting diodes (LEDs) on plant morphogenesis and the development of photosynthetic apparatus in cucumber (Cucumis sativus) leaves from emergence to full expansion under weak light [50 μmol(photon) m−2 s−1]. We found that B could significantly increase the leaf area (LA), shoot elongation, Chl a/b, net photosynthetic rate, and stomatal conductance (g s). In addition, the comparisons of maximal quantum yield of PSII photochemistry and the photosynthetic performance index between B-, W (white light)-, and R (red light)-grown leaves suggested that B was essential for the development of photosynthetic apparatus under weak light. B-grown leaves had the lowest Chl content under weak light, however, they had well-developed chloroplasts with the highest degree of stacked lamellae and the lowest starch accumulation. This could explain to a considerable extent the highest net photosynthetic rate per Chl unit. The results demonstrated that B optimized photosynthetic performance by improving the photosynthetic rate, increasing LA, and prolonging active photosynthesis duration under low irradiance. Therefore B is necessary to ensure healthy development of chloroplasts and highly efficient photosynthetic functions in cucumbers under a weak light environment. More importantly, our study also provided theoretical and technical support for the development of light environmental control technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

B:

blue LEDs

Chl:

chlorophyll

DM:

dry mass

Fv/Fm :

maximal quantum yield of PSII photochemistry

g m :

apparent mesophyll conductance

g s :

stomatal conductance

LA:

leaf area

LED:

light emitting diode

PIABS :

photosynthetic performance index

P NA :

net photosynthetic rate per unit of leaf area

P NC :

net photosynthetic rate per unit of chlorophyll

R:

red LEDs

W:

white LEDs

References

  • Abidi, F., Girault, T., Douillet, O. et al.: Blue light effects on rose photosynthesis and photomorphogenesis. — Plant Biol. 15: 67–74, 2012.

    Article  PubMed  Google Scholar 

  • Appenroth, K.J., Stöcke l, J., Srivastava, A. et al.: Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements. — Environ. Pollut. 115: 49–64, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Ballaré, C.L., Scopel, A.L., Sánchez, R.A.: Photocontrol of stem elongation in plant neighbourhoods: Effects of photon fluence rate under natural conditions of radiation. — Plant Cell Environ. 14: 57–65, 1991.

    Article  Google Scholar 

  • Bondada, B.R., Syvertsen, J.P.: Leaf chlorophyll, net gas exchange and chloroplast ultrastructure in citrus leaves of different nitrogen status. — Tree Physiol. 23: 553–559, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Bondada, B.R., Oosterhuis, D.M.: Morphometric analysis of chloroplasts of cotton leaf and fruiting organs. — Biol. Plantarum 47: 281–284, 2003.

    Article  Google Scholar 

  • Borrell, A.K., Hammer, G.L., Henzell, R.G.: Does maintaining green leaf area in Sorghum improve yield under drought? II. Dry matter production and yield. — Crop Sci. 40: 1037–1048, 2000.

    Article  Google Scholar 

  • Brouwer, B., Ziolkowska, A., Bagard, M. et al.: The impact of light intensity on shade-induced leaf senescence. — Plant Cell Environ. 35: 1084–1098, 2012.

    Article  PubMed  Google Scholar 

  • Brown, C.S., Schuerger, A.C., Sager, J.C.: Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting. — J. Am. Soc. Hortic. Sci. 120: 808–813, 1995.

    CAS  PubMed  Google Scholar 

  • Carmi, A., Shomer, I.: Starch accumulation and photosynthetic activity in primary leaves of bean (Phaseolus vulgaris L.). — Ann. Bot.-London 44: 479–484, 1979.

    CAS  Google Scholar 

  • Causin, H.F., Jauregui, R.N., Barneix, A.J.: The effect of light spectral quality on leaf senescence and oxidative stress in wheat. — Plant Sci. 177: 24–33, 2006.

    Article  Google Scholar 

  • Costa, B.S., Jungandreas, A., Jakob, T. et al.: Blue light is essential for high light acclimation and photoprotection in the diatom Phaeodactylum tricornutum. — J. Exp. Bot. 64: 483–493, 2013.

    Article  Google Scholar 

  • de Groot, C.C., van den Boogaard, R., Marcelis, L.F.M. et al.: Contrasting effects of N and P deprivation on the regulation of photosynthesis in tomato plants in relation to feedback limitation. — J. Exp. Bot. 54: 1957–1967, 2003.

    Article  PubMed  Google Scholar 

  • Dougher, T.A., Bugbee, B.G.: Is blue light good or bad for plants? — Life Support Biosph. Sci. 5: 129–136, 1998.

    CAS  PubMed  Google Scholar 

  • Dougher, T.A., Bugbee, B.G.: Difference in response of wheat, soybean and lettuce to reduced blue radiation. — J. Photoch. Photobiol. 73: 199–207, 2001.

    Article  CAS  Google Scholar 

  • Eskins, K., Jiang, C.Z., Shibles, R.: Light quality and irradiance effects on pigments, light-harvesting proteins and Rubisco activity in a chlorophyll- and light-harvesting-deficient soybean mutant. — Physiol. Plantarum 83: 47–53, 1991.

    Article  CAS  Google Scholar 

  • Evans, J.R.: Acclimation by the thylakoid membranes to growth irradiance and the partitioning of nitrogen between soluble and thylakoid proteins. — Aust. J. Plant Physiol. 15: 93–106, 1988.

    Article  CAS  Google Scholar 

  • Fischer, R.A., Rees, D., Sayre, K.D. et al.: Wheat yield progress associated with higher stomatal conductance and photosynthetic rates, and cooler canopies. — Crop Sci. 38: 1467–1475, 1998.

    Article  Google Scholar 

  • Fukuda, N., Ishii, Y., Ezura, H. et al.: Effects of light quality under red and blue light emitting diodes on growth and expression of fbp 28 in petunia. — Acta Hortic. 907: 361–366, 2011.

    CAS  Google Scholar 

  • Gan, S., Amasino, R.M.: Inhibition of leaf senescence by autoregulated production of cytokinin. — Science 270: 1986–1988, 1995.

    Article  CAS  PubMed  Google Scholar 

  • Goins, G.D., Yorio, N.C., Sanwo, M.M. et al.: Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting. — J. Exp. Bot. 48: 1407–1413, 1997.

    Article  CAS  PubMed  Google Scholar 

  • Heo, J.W., Lee, C.W., Chakrabarty, D. et al.: Growth responses of marigold and salvia bedding plants as affected by monochromic or mixture radiation provided by a light-emitting diode (LED). — Plant Growth Regul. 38: 225–230, 2002.

    Article  CAS  Google Scholar 

  • Hogewoning, S.W., Trouwborst, G., Maljaars, H. et al.: Blue light dose-response of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. — J. Exp. Bot. 61: 3107–3117, 2010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Inada, K.: Action spectra for photosynthesis in higher plants. — Plant Cell Physiol. 17: 355–365, 1976.

    Google Scholar 

  • Kato, M.C., Hikosaka, K., Hirose, T.: Leaf discs floated on water are different from intact leaves in photosynthesis and photoinhibition. — Photosynth. Res. 72: 65–70, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Kaufman, L.S.: Transduction of blue-light signals. — Plant Physiol. 102: 333–337, 1993.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kendrick, R.E., Kronenberg, G.H.M.: Photomorphogenesis in Plants. Pp. 17–24. Kluwer Academic Publishers, Dordrecht — Boston 1994.

    Book  Google Scholar 

  • Khattak, A.M., Pearson, S., Johnson, C.B.: The effects of far red spectral filters and plant density on the growth and development of chrysanthemum. — Sci. Hortic.-Amsterdam 102: 335–341, 2004.

    Article  Google Scholar 

  • Leong, T.Y., Anderson, J.M.: Effect of light quality on the composition and function of thylakoid membranes in Atriplex triangularis. — BBA-Bioenergetics 766: 533–541, 1984.

    Article  CAS  Google Scholar 

  • Lichtenthaler, H.K., Wellburn, A.R.: Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. — Biochem. Soc. T. 11: 591–592, 1983.

    CAS  Google Scholar 

  • Matsuda, R., Ohashi-Kaneko, K., Fujiwara, K. et al.: Photosynthetic characteristics of rice leaves grown under red light with or without supplemental blue light. — Plant Cell Physiol. 45: 1870–1874, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Matsuda, R., Ohashi-Kaneko, K., Fujiwara, K. et al.: Effects of blue light deficiency on acclimation of light energy partitioning in PSII and CO2 assimilation capacity to high irradiance in spinach leaves. — Plant Cell Physiol. 49: 664–670, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Milivojević, D.B., Tyszkiewicz, E.: Effect of light quality on the organization of chloroplast thylakoids of Pinus nigra Arn. — Plant Physiol. 139: 574–578, 1992.

    Article  Google Scholar 

  • Murchie, E.H., Horton, P.: Contrasting patterns of photosynthetic acclimation to the light environment are dependent on the differential expression of the responses to altered irradiance and spectral quality. — Plant Cell Environ. 21: 139–148, 1998.

    Article  Google Scholar 

  • Paul, M.J., Foyer, C.H.: Sink regulation of photosynthesis. — J. Exp. Bot. 52: 1383–1400, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Paul, M.J., Pellny, T.K.: Carbon metabolite feedback regulation of leaf photosynthesis and development. — J. Exp. Bot. 54: 539–547, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Piszczek, P., Glowacka, B.: Effects of the colour of light on cucumber (Cucumis sativus L.) Seedling. — Veg. Crop Res. Bull. 68: 71–80, 2008.

    Google Scholar 

  • Quail, P.H.: Photosensory perception and signal transduction in plants. — Curr. Opin. Genet. Dev. 4: 652–661, 1994.

    Article  CAS  PubMed  Google Scholar 

  • Rajapakse, N.C., Kelly, J.W.: Spectral filters and growing season influence growth and carbohydrate status of chrysanthemum. — J. Am. Soc. Hortic. Sci. 120: 78–83, 1995.

    CAS  Google Scholar 

  • Sarala, M., Taulavuori, K., Taulavuori, E. et al.: Elongation of scots pine seedlings under blue light depletion is independent of etiolation. — Environ. Exp. Bot. 60: 340–343, 2007.

    Article  Google Scholar 

  • Schuerger, A.C., Brown, C.S., Stryjewski, E.C.: Anatomical features of pepper plants (Capsicum annuum L.) grown under red light-emitting diodes supplemented with blue or far-red light. — Ann. Bot.-London 79: 273–282, 1997.

    Article  CAS  Google Scholar 

  • Senger, H.: The effect of blue light on plants and microorganisms. — Photochem. Photobiol. 35: 911–920, 1982.

    Article  CAS  Google Scholar 

  • Senger, H., Bauer, B.: The influence of light quality on adaptation and function of the photosynthetic apparatus. — Photochem. Photobiol. 45: 939–946, 1987.

    Article  CAS  Google Scholar 

  • Selivankina, S.Y., Karavaiko, N.N., Kuiper, D. et al.: Cytokinin activity of zeatin allelic phosphate, a natural compound. — Plant Growth Regul. 33: 157–164, 2001.

    Article  CAS  Google Scholar 

  • Sheen, J.: Metabolic repression of transcription in higher plants. — Plant Cell 2: 1027–1038, 1990.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shibuya, T., Endo, R., Kitamura, Y. et al.: Potential photosynthetic advantages of cucumber (Cucumis sativus L.) seedlings grown under fluorescent lamps with high red: far-red light. — Hortscience 45: 553–558, 2010.

    Google Scholar 

  • Smith, H.: Light quality, photoperception, and plant strategy. — Annu. Rev. Plant Phys. 33: 481–518, 1982.

    Article  CAS  Google Scholar 

  • Smith, H.: Physiological and ecological function within the phytochrome family. — Annu. Rev. Plant Phys. 46: 289–315, 1995.

    Article  CAS  Google Scholar 

  • Stitt, M., Lunn, J., Usadel, B.: Arabidopsis and primary photosynthetic metabolism: more than the icing on the cake. — Plant J. 61: 1067–1091, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Strasser, R.J., Tsimilli-Michael, M., Srivastava, A.: Analysis of the chlorophyll a fluorescence transient. — In: Papageorgiou, G., Govindjee (ed.): Advances in Photosynthesis and Respiration. Pp. 1–42. KAP Press, Dordrecht 2004.

    Google Scholar 

  • Terfa, M.T., Solhaug, K.A., Gislerød, H.R. et al.: A high proportion of blue light increases the photosynthesis capacity and leaf formation rate of Rosa × hybrida but does not affect time to flower opening. — Physiol. Plantarum 148: 146–159, 2012.

    Article  Google Scholar 

  • Thomas, H., Howarth, C.J.: Five ways to stay green. — J. Exp. Bot. 51: 329–337, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H., Gu, M., Cui, J.X. et al.: Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of calvin cycle genes and carbohydrate accumulation in Cucumis sativus. — J. Photochem. Photobiol. B 96: 30–37, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, D.A., Weigel, R.C., Wheeler, R.M. et al.: Light spectral quality effects on the growth of potato (Solanum tuberosum L.) nodal cuttings in vitro. — In Vitro Cell Dev. B 29: 5–8, 1993.

    Article  Google Scholar 

  • Xu, K., Guo, Y.P., Zhang, S.L.: [Effect of light quality on photosynthesis and chlorophyll fluorescence in strawberry leaves.] — Sci. Agri. Sin. 38: 369–375, 2005. [In Chinese]

    CAS  Google Scholar 

  • Yano, S., Terashima, I.: Separate localization of light signal perception for sun and shade type chloroplast and palisade tissue differentiation in Chenopodium album. — Plant Cell Physiol. 42: 1303–1310, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Zeiger, E., Talbott, L.D., Frechilla, S. et al.: The guard cell chloroplast: a perspective for the twenty-first century. — New Phytol. 153: 415–424, 2002.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. M. Xu.

Additional information

Acknowledgements: This work was supported by the National Natural Science Foundation of China (31171998) and Natural Science Foundation of Jiangsu Province (BK2010439). We thank Dr. T. Sansotta for language correctness on the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X.Y., Xu, X.M. & Cui, J. The importance of blue light for leaf area expansion, development of photosynthetic apparatus, and chloroplast ultrastructure of Cucumis sativus grown under weak light. Photosynthetica 53, 213–222 (2015). https://doi.org/10.1007/s11099-015-0083-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-015-0083-8

Additional key words

Navigation