Skip to main content
Log in

The dorsal stream and the visual horizon

  • Published:
Phenomenology and the Cognitive Sciences Aims and scope Submit manuscript

Abstract

Today many philosophers of mind accept that the two cortical streams of visual processing in humans can be distinguished in terms of conscious experience. The ventral stream is thought to produce representations that may become conscious, and the dorsal stream is thought to handle unconscious vision for action. Despite a vast literature on the topic of the two streams, there is currently no account of the way in which the relevant empirical evidence could fit with basic Husserlian phenomenology of vision. Here I offer such an account. In this article, I show how the empirical evidence ought to be understood in a way that is informed by phenomenology. The differences in the two streams are better described as differences in spatial and temporal processing. Rather than simply “unconscious,” the dorsal stream can be better described as making a special contribution to what Husserl identified as the visual horizon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For some examples of Milner and Goodale's main hypothesis influencing discussions of visual consciousness, see Crick and Koch (1998: 98) and Chalmers (2000: 21). Also note that some of Andy Clark's work on this topic supposes that Milner and Goodale are correct in emphasizing the dichotomy between conscious vision for perception versus unconscious vision for action. In his influential article from 2001, for example, both the assumption of Experience Based Control (EBC) and the hypothesis of Experience Based Selection (EBS) are formulated without mention of the temporal and spatial scales at play in conscious experience.

  2. For some recent philosophical work that challenges the dichotomy, see Noë (2004), Schellenberg (2008), and Briscoe (2009). Of course, the Gibsonian ecological tradition in psychology could also motivate criticism of the dichotomy.

  3. For a more detailed presentation of this theme, see Madary (forthcoming).

  4. My comments here are about the physiological nature of the inputs to the two streams, and I am not going to enter the somewhat large debate over egocentric versus allocentric coding in the two streams. For a treatment of this issue from a philosophical perspective, see Briscoe (2009).

  5. In what follows, I will assume familiarity with basic anatomy and physiology of the visual system. For an introduction to this topic, see Palmer (1999) or Goldstein (2002).

  6. There is also a third koniocellular pathway that is not as well understood as the other two major pathways. Also, the koniocellular pathway includes far less cells than the other two (Kveraga et al. 2007; Callaway 2005).

  7. For a review of the challenges to their proposal, see Milner and Goodale (1995: 34–36). Some important articles on this topic include Schiller and Logothetis (1990), Merigan and Maunsell (1993), and more recently Nassi and Calloway (2006, 2009).

  8. For an alternative view based on macaque retina, see Silveira and Perry (1991).

  9. Jacob and Jeannerod also discuss patient S.B. (2003: 88–89).

  10. I am not suggesting here that visual anticipation is exclusively enabled by the dorsal stream. Thanks to Nivedita Gangopadhyay for this point.

References

  • Aglioti, S., Goodale, M. A., & DeSouza, J. F. X. (1995). Size-contrast illusions deceive the eye but not the hand. Current Biology, 5, 679–685.

    Article  Google Scholar 

  • Aristotle. (1957). On the soul. Parva naturalia. On breath. Cambridge: Harvard University Press. W.S. Hett, translator.

    Google Scholar 

  • Bar, M. (2003). A cortical mechanism for triggering top-down facilitation in visual object recognition. Journal of Cognitive Neuroscience, 15, 600–609.

    Article  Google Scholar 

  • Block, N. (2005). Review of Alva Noë action in perception. Journal of Philosophy, 5, 259–272.

    Google Scholar 

  • Block, N. (2007). Consciousness, accessibility and the mesh between psychology and neuroscience. The Behavioral and Brain Sciences, 30, 481–548.

    Google Scholar 

  • Briscoe, R. (2009). Egocentric spatial representation in action and perception. Philosophy and Phenomenological Research, 2, 423–460.

    Article  Google Scholar 

  • Brown, L. E., Halpert, B. A., & Goodale, M. A. (2005). Peripheral vision for perception and action. Experimental Brain Research, 165, 97–106.

    Article  Google Scholar 

  • Bullier, J. (2001a). Feedback connections and conscious vision. Trends in Cognitive Sciences, 5, 369–370.

    Article  Google Scholar 

  • Bullier, J. (2001b). Integrated model of visual processing. Brain Research Reviews, 36, 96–107.

    Article  Google Scholar 

  • Callaway, E. M. (2005). Structure and function of parallel pathways in the primate early visual system. The Journal of Physiology, 566, 13–19.

    Article  Google Scholar 

  • Carruthers, P. (2005). Consciousness: Essays from a higher order perspective. London: Oxford University Press.

    Google Scholar 

  • Chalmers, D. (2000). What is a neural correlate of consciousness? In T. Metzinger (Ed.), Neural correlates of consciousness: Empirical and conceptual issues. Cambridge: MIT Press.

    Google Scholar 

  • Clark, A. (2001). Visual experience and motor action: are the bonds too tight? Philosophical Review, 110, 495–519.

    Google Scholar 

  • Colby, C. L., Gattas, R., Olson, C. R., & Gross, C. G. (1988). Topographic organization of cortical afferents to extrastriate visual area PO in the macaque: A dual tracer study. The Journal of Comparative Neurology, 269, 392–413.

    Article  Google Scholar 

  • Crick, F., & Koch, C. (1998). Consciousness and neuroscience. Cerebral Cortex, 8, 97–107.

    Article  Google Scholar 

  • Dacey, D., & Petersen, M. (1992). Dendritic field size and morphology of midget and parasol ganglion cells of the human retina. Proc Natl Acad Sci, 89, 9666–9670.

    Article  Google Scholar 

  • Dennett, D. (1991). Consciousness explained. Boston: Little, Brown.

    Google Scholar 

  • Findlay, J. M., & Gilchrist, I. (2003). Active vision: the psychology of looking and seeing. London: Oxford University Press.

    Google Scholar 

  • Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society of London—B, 360, 815–836.

    Article  Google Scholar 

  • Gallagher, S. (2003). Phenomenology and experimental design. Journal of Consciousness Studies, 10, 85–99.

    Google Scholar 

  • Gallese, V. (2007). The ‘Conscious’ dorsal stream: Embodied simulation and its role in space and action consciousness awareness. Psyche, 13(1), 1–20.

    Google Scholar 

  • Gangopadhyay, N., Madary, M., & Spicer, F. (Eds.). (2010). Perception, action, consciousness: Sensorimotor dynamics and two visual systems. London: Oxford University Press.

    Google Scholar 

  • Goldstein, E. B. (2002). Sensation and perception. Cambridge: Pacific Grove.

    Google Scholar 

  • Gonzalez, C. L. R., Ganel, T., & Goodale, M. A. (2006). Hemispheric specialization for the visual control of action is independent of handedness. Journal of Neurophysiology, 95, 3496–3501.

    Article  Google Scholar 

  • Gonzalez, C. L. R., Ganel, T., Whitwell, R. L., Morrissey, B., & Goodale, M. A. (2008). Practice makes perfect, but only with the right hand: Sensitivity to perceptual illusions with awkward grasps decreases with practice in the right but not the left hand. Neuropsychologia, 46, 624–631.

    Article  Google Scholar 

  • Goodale, M. A., Jakobson, L. S., & Keillor, J. M. (1994). Differences in the visual control of pantomimed and natural grasping movements. Neuropsychologia, 32, 1159–1178.

    Article  Google Scholar 

  • Goodale, M. A., Meenan, J. P., Bülthoff, H., et al. (1994). Separate neural pathways for the visual analysis of object shape in perception and prehension. Current Biology, 4, 604–610.

    Article  Google Scholar 

  • Hurley, S. (1998). Consciousness in action. Cambridge: Harvard University Press.

    Google Scholar 

  • Husserl, E. (1901/1993). Logische Untersuchungen II. Tübingen: Niemeyer.

  • Husserl, E. (1966). Husserliana XI Analysen zur passiven Synthesis. Den Haag: Martinus Nijhoff; Analyses Concerning Passive and Active Synthesis, trans. A. Steinbock. Dordrecht: Kluwer, 2001.

  • Husserl, E. (1973). Husserliana XVI Ding und Raum: Vorlesungen 1907. Den Haag: Martinus Nijhoff; Thing and Space, trans. R. Rojcewicz. Dordrecht: Kluwer Academic, 1997.

  • Husserl, E. (1976). Husserliana III Ideen zu einer reinen Phanomenologie und phanomenologischen Philosophie. Erstes Buch. Den Haag: Martinus Nijhoff.

    Google Scholar 

  • Husserl, E. (1999). Erfahrung und Urteil Hamburg: Meiner.

  • Jacob, P., & Jeannerod, M. (2003). Ways of seeing: The scope and limits of visual cognition. London: Oxford University Press.

    Google Scholar 

  • Króliczak, G., Heard, P., Goodale, M., & Gregory, R. (2006). Dissociation of perception and action unmasked by the hollow-face illusion. Brain Research, 1080(1), 9–16.

    Article  Google Scholar 

  • Kveraga, K., Ghuman, A., & Bar, M. (2007). Top-down predictions in the cognitive brain. Brain and Cognition, 65, 145–168.

    Article  Google Scholar 

  • Lê, S., Cardebat, D., Boulanouar, K., et al. (2002). Seeing, since childhood, without ventral stream: a behavioral study. Brain, 125, 58–74.

    Article  Google Scholar 

  • Livingstone, M., & Hubel, D. (1988). Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science, 240, 740–749.

    Article  Google Scholar 

  • Logothetis, N. (2008). What we can do and what we cannot do with fMRI. Nature, 453, 869–878.

    Article  Google Scholar 

  • Madary, M. (forthcoming). Husserl on perceptual constancy. European Journal of Philosophy.

  • Merigan, W. H., & Maunsell, J. H. R. (1993). How parallel are the primate visual pathways? Ann. Rev. Neurosci., 16, 369–402.

    Article  Google Scholar 

  • Milner, A. D., & Goodale, M. A. (1995). The visual brain in action. Oxford: Oxford University Press.

    Google Scholar 

  • Milner, A. D., & Goodale, M. A. (2005). Sight unseen. Oxford: Oxford University Press.

    Google Scholar 

  • Milner, A. D., & Goodale, M. A. (2010). Cortical visual systems for perception and action. In N. Gangopadhyay et al. (Eds.), Perception, action, consciousness: sensorimotor dynamics and two visual systems. London: Oxford University Press.

    Google Scholar 

  • Nassi, J., & Callaway, E. (2006). Multiple circuits relaying primate parallel visual pathways to the middle temporal area. The Journal of Neuroscience, 26, 12789–12798.

    Article  Google Scholar 

  • Nassi, J., & Callaway, E. (2009). Parallel processing strategies of the primate visual system. Nature Reviews Neuroscience, 10, 360–372.

    Article  Google Scholar 

  • Noë, A. (2004). Action in perception. Cambridge, MA: MIT Press.

    Google Scholar 

  • Noë, A., & Thompson, E. (2004). What is a neural correlate of consciousness? Journal of Consciousness Studies, 11, 3–28.

    Google Scholar 

  • Nowak, L. G., & Bullier, J. (1997). The timing of information transfer in the visual system. In J. H. Kaas, K. L. Rockland, & A. L. Peters (Eds.), Extrastriate visual cortex in primates (pp. 205–241). New York: Plenum Pub Corp pp.

    Google Scholar 

  • Ogmen, H. (1993). A neural theory of retino-cortical dynamics. Neural Networks, 6, 245–273.

    Article  Google Scholar 

  • Ogmen, H., Breitmeyer, B., & Bedell, H. (2006). Dynamics of perceptual epochs probed by dissociation phenomena in masking. In H. Ogmen & B. Breitmeyer (Eds.), The first half second. Cambridge: MIT Press.

    Google Scholar 

  • Palmer, S. (1999). Vision: From photons to phenomenology. Cambridge: MIT Press.

    Google Scholar 

  • Pisella, L., Binkofski, F., Lasek, K., Toni, I., & Rossetti, Y. (2006). No double-dissociation between optic ataxia and visual agnosia: multiple sub-streams for multiple visuo-manual integrations. Neuropsychologia, 44, 2734–2748.

    Article  Google Scholar 

  • Rao, R. P. N., & Ballard, D. (1999). Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2, 79–87.

    Article  Google Scholar 

  • Rizzolatti, G., Luppino, G., & Matelli, M. (1998). The organization of the cortical motor system: new concepts. Electroencephalography and Clinical Neurophysiology, 106, 283–296.

    Article  Google Scholar 

  • Rossetti, Y., Pisella, L., & Vighetto, A. (2003). Optic ataxia revisited: Visually guided action versus immediate visuomotor control. Experimental Brain Research, 153, 171–179.

    Article  Google Scholar 

  • Rossetti, Y., Revol, P., McIntosh, R., et al. (2005). Visually guided reaching: Bilateral posterior parietal lesions cause a switch from fast visuomotor to slow cognitive control. Neuropsychologia, 43, 162–177.

    Article  Google Scholar 

  • Rossetti, Y., Ota, H., Blangero, A., Vighetto, A., & Pisella, L. (2010). Why does the perception-action functional dichotomy not match the ventral-dorsal streams anatomical segregation: optic ataxia and the function of the dorsal stream. In N. Gangopadhyay et al. (Eds.), Perception, Action, Consciousness: Sensorimotor Dynamics and Two Visual Systems. Oxford: University Press.

    Google Scholar 

  • Rozzi, S., Calzavara, R., Belmalih, A., Borra, E., Gregoriou, G. G., Matelli, M., et al. (2006). Cortical connections of the inferior parietal cortical convexity of the macaque monkey. Cerebral Cortex, 16, 1389–1417.

    Article  Google Scholar 

  • Schellenberg, S. (2008). The situation-dependency of perception. The Journal of Philosophy, 105, 55–84.

    Google Scholar 

  • Schiller, P., & Logothetis, N. (1990). The color-opponent and broad-band channels of the primate visual system. Trends in Neurosciences, 13, 392–398.

    Article  Google Scholar 

  • Silviera, L. C. L., & Perry, V. H. (1991). The topography of magnocellular projecting ganglion cells (m-ganglion cells) in the primate retina. Neuroscience, 40, 217–237.

    Article  Google Scholar 

  • Steinbock, A. (1995). Home and beyond: Generative phenomenology after Husserl. Evanston: Northwestern University Press.

    Google Scholar 

  • Thompson, E. (2007). Mind in life. Cambridge: Harvard University Press.

    Google Scholar 

  • Van Gulick, R. (2007). What if phenomenal consciousness admits of degrees? The Behavioral and Brain Sciences, 30, 528–529.

    Google Scholar 

  • Wallhagen, M. (2007). Consciousness and action: Does cognitive science support (mild) epiphenomenalism? The British Journal for the Philosophy of Science, 58, 539–561.

    Article  Google Scholar 

  • Zahavi, D. (2010). Naturalized phenomenology. In S. Gallagher & D. Schmicking (Eds.), Handbook of phenomenology and cognitive science. New York: Springer.

    Google Scholar 

Download references

Acknowledgments

I am grateful for the helpful comments I received when presenting this material at the Center for Subjectivity Research in Copenhagen in May 2010. My research for this article was supported by a collaborative research project on Consciousness in a Natural and Cultural Context (CONTACT), which was coordinated by the European Science Foundation (ESF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Madary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madary, M. The dorsal stream and the visual horizon. Phenom Cogn Sci 10, 423–438 (2011). https://doi.org/10.1007/s11097-011-9214-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11097-011-9214-2

Keywords

Navigation