Skip to main content

Advertisement

Log in

Analysis of In Vitro Cytotoxicity of Carbohydrate-Based Materials Used for Dissolvable Microneedle Arrays

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Dissolvable microneedle arrays (MNAs) can be used to realize enhanced transdermal and intradermal drug delivery. Dissolvable MNAs are fabricated from biocompatible and water-soluble base polymers, and the biocargo to be delivered is integrated with the base polymer when forming the MNAs. The base polymer is selected to provide mechanical strength, desired dissolution characteristics, and compatibility with the biocargo. However, to satisfy regulatory requirements and be utilized in clinical applications, cytotoxicity of the base polymers should also be thoroughly characterized. This study systematically investigated the cytotoxicity of several important carbohydrate-based base polymers used for production of MNAs, including carboxymethyl cellulose (CMC), maltodextrin (MD), trehalose (Treh), glucose (Gluc), and hyaluronic acid (HA).

Methods

Each material was evaluated using in vitro cell-culture methods on relevant mouse and human cells, including MPEK-BL6 mouse keratinocytes, NIH-3T3 mouse fibroblasts, HaCaT human keratinocytes, and NHDF human fibroblasts. A common laboratory cell line, human embryonic kidney cells HEK-293, was also used to allow comparisons to various cytotoxicity studies in the literature. Dissolvable MNA materials were evaluated at concentrations ranging from 3 mg/mL to 80 mg/mL.

Results

Qualitative and quantitative analyses of cytotoxicity were performed using optical microscopy, confocal fluorescence microscopy, and flow cytometry-based assays for cell morphology, viability, necrosis and apoptosis. Results from different methods consistently demonstrated negligible in vitro cytotoxicity of carboxymethyl cellulose, maltodextrin, trehalose and hyaluronic acid. Glucose was observed to be toxic to cells at concentrations higher than 50 mg/mL.

Conclusions

It is concluded that CMC, MD, Treh, HA, and glucose (at low concentrations) do not pose challenges in terms of cytotoxicity, and thus, are good candidates as MNA materials for creating clinically-relevant and well-tolerated biodissolvable MNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The authors declare that all data supporting the findings of this study are available within the paper and its supplementary material, source data for the figures in this study are available from the authors upon request.

Abbreviations

CMC:

Carboxymethyl cellulose

DMEM:

Dulbecco’s Modified Eagle’s Medium

FBS:

Fetal bovine serum

FDA:

U.S. Food and Drug Administration

Gluc:

Glucose

GMP:

Good manufacturing practices

HA:

Hyaluronic acid

ISO:

International Organization for Standardization

MD:

Maltodextrin

MNA:

Microneedle array

PBS:

Phosphate-buffered saline

Treh:

Trehalose

References

  1. Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26(11):1261–8.

  2. Loizidou EZ, Williams NA, Barrow DA, Eaton MJ, McCrory J, Evans SL, et al. Structural characterisation and transdermal delivery studies on sugar microneedles: Experimental and finite element modelling analyses. Eur J Pharm Biopharm. Elsevier B.V. 2015;89:224–31.

  3. Bediz B, Korkmaz E, Khilwani R, Donahue C, Erdos G, Falo LD, et al. Dissolvable microneedle arrays for intradermal delivery of biologics: Fabrication and application. Pharm Res. 2014;31(1):117–35.

  4. Tuan-Mahmood TM, McCrudden MTC, Torrisi BM, McAlister E, Garland MJ, Singh TRR, et al. Microneedles for intradermal and transdermal drug delivery. Eur J Pharm Sci. 2013;50(5):623–37.

  5. Korkmaz E, Friedrich EE, Ramadan MH, Erdos G, Mathers AR, Ozdoganlar OB, et al. Tip-Loaded Dissolvable Microneedle Arrays Effectively Deliver Polymer-Conjugated Antibody Inhibitors of Tumor-Necrosis-Factor-Alpha into Human Skin. J Pharm Sci. Elsevier B.V.; 2016;105(11):3453–7.

  6. Kovaliov M, Li S, Korkmaz E, Cohen-Karni D, Tomycz N, Ozdoganlar OB, et al. Extended-release of opioids using fentanyl-based polymeric nanoparticles for enhanced pain management. RSC Adv. Royal Society of Chemistry; 2017;7(76):47904–12.

  7. Larrañeta E, Lutton REM, Woolfson AD, Donnelly RF. Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development. Mater Sci Eng R Reports. 2016;104:1–32.

  8. Hong X, Wei L, Wu F, Wu Z, Chen L, Liu Z, et al. Dissolving and biodegradable microneedle technologies for transdermal sustained delivery of drug and vaccine. Drug Des Devel Ther. 2013;7:945–52.

  9. Donnelly RF, Singh TR, Morrow DI, Woolfson AD. Microneedle-mediated transdermal and intradermal drug delivery. Hoboken: John Wiley & Sons; 2012.

  10. Prausnitz MR. Microneedles for transdermal drug delivery. Adv Drug Deliv Rev. 2004;56(5):581–7.

  11. Lee JW, Park JH, Prausnitz MR. Dissolving microneedles for transdermal drug delivery. Biomaterials. 2008;29(13):2113–24.

  12. Shelke NB, James R, Laurencin CT, Kumbar SG. Polysaccharide biomaterials for drug delivery and regenerative engineering. Polym Adv Technol. 2014;25(5):448–60.

  13. Korkmaz E, Friedrich EE, Ramadan MH, Erdos G, Mathers AR, Ozdoganlar OB, et al. Therapeutic intradermal delivery of tumor necrosis factor-alpha antibodies using tip-loaded dissolvable microneedle arrays. Acta Biomater. 2015;24:96–105.

  14. Indermun S, Luttge R, Choonara YE, Kumar P, Du Toit LC, Modi G, et al. Current advances in the fabrication of microneedles for transdermal delivery. J Control Release. 2014;185:130–8.

  15. Valenta C, Auner BG. The use of polymers for dermal and transdermal delivery. Eur J Pharm Biopharm. 2004;58(2):279–89.

  16. Godin B, Touitou E. Transdermal skin delivery: Predictions for humans from in vivo, ex vivo and animal models. Adv Drug Deliv Rev. 2007;59(11):1152–61.

  17. Akers MJ. Excipient-drug interactions in parenteral formulations. J Pharm Sci. 2002;91(11):2283–300.

  18. Colaço C, Sen S, Thangavelu M, Pinder S, Roser B. Extraordinary stability of enzymes dried in trehalose: Simplified molecular biology. Bio/Technology. 1992;10(9):1007–11.

  19. Ohtake S, Wang YJ. Trehalose: Current use and future applications. J Pharm Sci 2011;100(6):2020–53.

  20. Elbein AD, Pan YT, Pastuszak I, Carroll D. New insights on trehalose: A multifunctional molecule. Glycobiology. 2003;13(4):17–27.

  21. Hreczuk-Hirst D, Chicco D, German L, Duncan R. Dextrins as potential carriers for drug targeting: Tailored rates of dextrin degradation by introduction of pendant groups. Int J Pharm. 2001;230(1-2):57–66.

  22. Moreira S, Gil Da Costa RM, Guardáo L, Gärtner F, Vilanova M, Gama M. In vivo biocompatibility and biodegradability of dextrin-based hydrogels. J Bioact Compat Polym. 2010;25(2):141–53.

  23. Sannino A, Demitri C, Madaghiele M. Biodegradable Cellulose-based Hydrogels: Design and Applications. Materials (Basel). 2009;2(2):353–73.

  24. Miyamoto T, Takahashi S, Ito H, Inagaki H, Noishiki Y. Tissue biocompatibility of cellulose and its derivatives. J Biomed Mater Res. 1989;23(1):125–33.

  25. Dhar N, Akhlaghi SP, Tam KC. Biodegradable and biocompatible polyampholyte microgels derived from chitosan, carboxymethyl cellulose and modified methyl cellulose. Carbohydr Polym. 2012;87(1):101–9.

  26. Burdick JA, Prestwich GD. Hyaluronic Acid Hydrogels for Biomedical Applications. Adv Mater. 2011;23(12):H41–56.

  27. Kogan G, Šoltés L, Stern R, Gemeiner P. Hyaluronic acid: A natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol Lett. 2007;29(1):17–25.

  28. Dawids S, ed. Test procedures for the blood compatibility of biomaterials. Berlin: Springer Science & Business Media; 2012.

  29. Poet TS, McDougal JN. Skin absorption and human risk assessment. Chem Biol Interact. 2002;140(1):19–34.

  30. Perfetto SP, Chattopadhyay PK, Roederer M. Seventeen-colour flow cytometry: Unravelling the immune system. Nat Rev Immunol. 2004;4(8):648–55.

  31. Marjanovič I, Kandušer M, Miklavčič D, Keber MM, Pavlin M. Comparison of Flow Cytometry, Fluorescence Microscopy and Spectrofluorometry for Analysis of Gene Electrotransfer Efficiency. J Membr Biol. 2014;247(12):1259–67.

  32. Wallin RF, Arscott EF. A practical guide to ISO 10993-5: Cytotoxicity. Med Device Diagnostic Ind. 1998;20:96–8.

  33. Nogueira D, Mitjans M, Rolim C, Vinardell M. Mechanisms Underlying Cytotoxicity Induced by Engineered Nanomaterials: A Review of In Vitro Studies. Nanomaterials. 2014;4(2):454–84.

  34. Wiegand C, Hipler U-C. Evaluation of Biocompatibility and Cytotoxicity Using Keratinocyte and Fibroblast Cultures. Skin Pharmacol Physiol. 2009;22(2):74–82.

  35. Lewinski N, Colvin V, Drezek R. Cytotoxicity of Nanoparticles. Small. 2008;4(1):26–49.

  36. Lü S, Liu M, Ni B. An injectable oxidized carboxymethylcellulose/N-succinyl-chitosan hydrogel system for protein delivery. Chem Eng J. 2010;160(2):779–87.

  37. Lee LS, Lee SU, Che CY, Lee JE. Comparison of cytotoxicity and wound healing effect of carboxymethylcellulose and hyaluronic acid on human corneal epithelial cells. Int J Ophthalmol. 2015;8(2):215–21.

  38. Nayak S, Kundu SC. Sericin-carboxymethyl cellulose porous matrices as cellular wound dressing material. J Biomed Mater Res Part A. 2014;102(6):1928–40.

  39. Roy N, Saha N, Humpolicek P, Saha P. Permeability and biocompatibility of novel medicated hydrogel wound dressings. Soft Mater. 2010;8(4):338–57.

  40. Park SN, Kim JK, Suh H. Evaluation of antibiotic-loaded collagen-hyaluronic acid matrix as a skin substitute. Biomaterials. 2004;25(17):3689–98.

  41. Chen H, Fan M. Chitosan/Carboxymethyl Cellulose Polyelectrolyte Complex Scaffolds for Pulp Cells Regeneration. J Bioact Compat Polym. 2007;22(5):475–91.

  42. Mohamed Amin Z, Koh SP, Yeap SK, Abdul Hamid NS, Tan CP, Long K. Efficacy study of broken rice maltodextrin in in vitro wound healing assay. Biomed Res Int. 2015.

  43. Laurent T, Kacem I, Blanchemain N, Cazaux F, Neut C, Hildebrand HF, et al. Cyclodextrin and maltodextrin finishing of a polypropylene abdominal wall implant for the prolonged delivery of ciprofloxacin. Acta Biomater. Acta Materialia Inc.; 2011;7(8):3141–9.

  44. Eroglu A, Russo MJ, Bieganski R, Fowler A, Cheley S, Bayley H, et al. Intracellular trehalose improves the survival of cryopreserved mammalian cells. Nat Biotechnol. 2000;18(2):163–7.

  45. Fernandez-Estevez MA, Casarejos MJ, López Sendon J, Garcia Caldentey J, Ruiz C, Gomez A, et al. Trehalose Reverses Cell Malfunction in Fibroblasts from Normal and Huntington’s Disease Patients Caused by Proteosome Inhibition. Borchelt DR, editor. PLoS One. 2014;9(2):e90202.

  46. Lan CC, Liu IH, Fang AH, Wen CH, Wu CS. Hyperglycaemic conditions decrease cultured keratinocyte mobility: implications for impaired wound healing in patients with diabetes. Br J Dermatol. 2008;159(5):1103-1115.

  47. Berge U, Behrens J, Rattan SIS. Sugar-induced premature aging and altered differentiation in human epidermal keratinocytes. Ann N Y Acad Sci. 2007;1100(1):524-529.

  48. Spravchikov N, Sizyakov G, Gartsbein M, Accili D, Tennenbaum T, Wertheimer E. Glucose Effects on Skin Keratinocytes Implications for Diabetes Skin Complications. Diabetes. 2001;50(7):1627–35.

  49. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9(7):671–5. 

  50. Majno G, Joris I. Apoptosis, oncosis, and necrosis: An overview of cell death. Am. J. Pathol. 1995;146(1):3–15.

  51. Stoddart MJ. Cell viability assays: Introduction. Methods Mol. Biol. 2011;740:1–6.

  52. Chiba K, Kawakami K, Tohyama K. Simultaneous evaluation of cell viability by neutral red, MTT and crystal violet staining assays of the same cells. Toxicol Vitr. 1998;12(3):251–8.

  53. Černe K, Erman A, Veranič P. Analysis of cytotoxicity of melittin on adherent culture of human endothelial cells reveals advantage of fluorescence microscopy over flow cytometry and haemocytometer assay. Protoplasma. 2013;250(5):1131–7.

  54. Kummrow A, Frankowski M, Bock N, Werner C, Dziekan T, Neukammer J. Quantitative assessment of cell viability based on flow cytometry and microscopy. Cytom Part A. 2013;83(2):197–204.

  55. Jiménez-Hernández ME, Orellana G, Montero F, Portolés MT. A Ruthenium Probe for Cell Viability Measurement Using Flow Cytometry, Confocal Microscopy and Time-resolved Luminescence. Photochem Photobiol. American Society for Photobiology; 2007;72(1):28–34.

  56. Fraser CG, Petersen PH. Desirable standards for laboratory tests if they are to fulfill medical needs. Clin Chem. 1993;39(7):1447-53.

  57. US Food and Drug Administration. Inactive ingredient search for approved drug products. FDA Database. 2017.

  58. US Department of Health and Human Services. US Food and Drug Adminstration: GRAS Substances (SCOGS) Database. 2015.

  59. US Food and Drug Administration. Substances Added to Food (formerly EAFUS). US Department of Health and Human Services. 2018.

  60. Miyano T, Tobinaga Y, Kanno T, Matsuzaki Y, Takeda H, Wakui M, et al. Sugar micro needles as transdermic drug delivery system. Biomed Microdevices. 2005;7(3):185–8.

  61. Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog. Polym. Sci. 2007;32(8-9):762-98.

  62. Tchounwou CK, Yedjou CG, Farah I, Tchounwou PB. D-glucose-induced cytotoxic, genotoxic, and apoptotic effects on human breast adenocarcinoma (MCF-7) cells. J Cancer Sci Ther. 2014;6:156–60.

  63. Lan C-CE, Wu C-S, Huang S-M, Kuo H-Y, Wu I-H, Liang CW, et al. High-glucose environment reduces human β-defensin-2 expression in human keratinocytes: implications for poor diabetic wound healing. Br J Dermatol. 2012;166(6):1221–9.

  64. Wlodkowic D, Telford W, Skommer J, Darzynkiewicz Z. Apoptosis and Beyond: Cytometry in Studies of Programmed Cell Death. Methods Cell Biol. 2011;103:55-98.

  65. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Programmed Cell Death (Apoptosis). Molecular Biology of the Cell, 4th edition. Garland Science; 2002.

  66. Elmore S. Apoptosis: A Review of Programmed Cell Death. Toxicol. Pathol. 2007;35(4):495-516.

  67. Yuan J, Najafov A, Py BF. Roles of Caspases in Necrotic Cell Death. Cell. 2016;167(7):1693–704.

  68. Yasuhara S, Zhu Y, Matsui T, Tipirneni N, Yasuhara Y, Kaneki M, et al. Comparison of comet assay, electron microscopy, and flow cytometry for detection of apoptosis. J Histochem Cytochem. 2003;51(7):873–85.

  69. Lobner D. Comparison of the LDH and MTT assays for quantifying cell death: Validity for neuronal apoptosis? J Neurosci Methods. 2000;96(2):147–52.

  70. Donner KJ, Becker KM, Hissong BD, Ahmed SA. Comparison of multiple assays for kinetic detection of apoptosis in thymocytes exposed to dexamethasone or diethylstilbesterol. Cytometry. 1999;35(1):80–90.

  71. Vermes I, Haanen C, Reutelingsperger C. Flow cytometry of apoptotic cell death. J Immunol Methods. 2000;243(1-2):167–90.

  72. Mazumder S, Plesca D, Almasan A. Caspase-3 Activation is a Critical Determinant of Genotoxic Stress-Induced Apoptosis. Apoptosis and Cancer. Totowa, NJ: Humana Press. 2008:13–21.

  73. Gurtu V, Kain SR, Zhang G. Fluorometric and colorimetric detection of caspase activity associated with apoptosis. Anal Biochem. 1997;251(1):98–102.

  74. Waghule T, Singhvi G, Dubey SK, Pandey MM, Gupta G, Singh M, et al. Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomed Pharmacother. Elsevier; 2019;109:1249–58.

  75. Donnelly RF, Singh TRR, Tunney MM, Morrow DIJ, McCarron PA, O’Mahony C, et al. Microneedle arrays allow lower microbial penetration than hypodermic needles in vitro. Pharm Res. 2009;26(11):2513–22.

  76. McCrudden MTC, Alkilani AZ, Courtenay AJ, McCrudden CM, McCloskey B, Walker C, et al. Considerations in the sterile manufacture of polymeric microneedle arrays. Drug Deliv Transl Res. Springer Verlag; 2014;5(1):3–14.

  77. Guidance FD. Use of International Standard ISO 10993-1 “Biological evaluation of medical devices—Part 1: Evaluation and testing within a risk management process” Guidance for Industry and Food and Drug Administration Staff. US Department of Health and Human Services. Food and Drug Administration, Center for Devices and Radiological Health. 2016.

  78. Markovsky E, Baabur-Cohen H, Eldar-Boock A, Omer L, Tiram G, Ferber S, et al. Administration, distribution, metabolism and elimination of polymer therapeutics. J Control Release. Elsevier B.V.; 2012;161(2):446–60.

  79. Hofman DL, van Buul VJ, Brouns FJPH. Nutrition, Health, and Regulatory Aspects of Digestible Maltodextrins. Crit Rev Food Sci Nutr. 2016;56(12):2091–100.

  80. Chang C, Zhang L. Cellulose-based hydrogels: Present status and application prospects. Carbohydr Polym. Elsevier Ltd.; 2011;84(1):40–53.

  81. Necas J, Bartosikova L, Brauner P, Kolar J. Hyaluronic acid (hyaluronan): a review. Vet. Med. 2008;53(8):397-411.

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, E.P.Y, E.K., P.G.C., and O.B.O.; Methodology, E.P.Y., E.K., D.S.A., P.G.C., and M.P.B.; Investigation, E.P.Y., D.S.A., E.K., and P.G.C.; Resources, O.B.O., P.G.C., M.P.B., and J.W.J.; Writing - original draft, E.P.Y. and E.K.; Writing - review editing, E.P.Y., E.K., P.G.C., M.P.B., J.W.J., C.A.T., and O.B.O.; Visualization, E.P.Y., E.K., and D.S.A.; Supervision, E.K., P.G.C., M.P.B., J.W.J., and O.B.O.; Project administration, P.G.C., O.B.O., and M.P.B.; Funding acquisition; O.B.O., P.G.C., M.P.B., and J.W.J.

Corresponding author

Correspondence to O. Burak Ozdoganlar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(JPG 7.28 MB)

ESM 2

(JPG 7.06 MB)

ESM 3

(JPG 7.86 MB)

ESM 4

(JPG 7.50 MB)

ESM 5

(JPG 3.53 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yalcintas, E.P., Ackerman, D.S., Korkmaz, E. et al. Analysis of In Vitro Cytotoxicity of Carbohydrate-Based Materials Used for Dissolvable Microneedle Arrays. Pharm Res 37, 33 (2020). https://doi.org/10.1007/s11095-019-2748-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-019-2748-7

Key Words

Navigation