Skip to main content

Advertisement

Log in

Pharmacokinetic-Pharmacodynamic Modeling of the Anti-Tumor Effect of Sunitinib Combined with Dopamine in the Human Non-Small Cell Lung Cancer Xenograft

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To investigate the anti-tumor effect of sunitinib in combination with dopamine in the treatment of nu/nu nude mice bearing non-small cell lung cancer (NSCLC) A549 cells and to develop the combination PK/PD model. Further, simulations were conducted to optimize the administration regimens.

Methods

A PK/PD model was developed based on our preclinical experiment to explore the relationship between plasma concentration and drug effect quantitatively. Further, the model was evaluated and validated. By fixing the parameters obtained from the PK/PD model, simulations were built to predict the tumor suppression under various regimens.

Results

The synergistic effect was observed between sunitinib and dopamine in the study, which was confirmed by the effect constant (GAMA, estimated as 2.49). The enhanced potency of dopamine on sunitinib was exerted by on/off effect in the PK/PD model. The optimal dose regimen was selected as sunitinib (120 mg/kg, q3d) in combination with dopamine (2 mg/kg, q3d) based on the simulation study.

Conclusions

The synergistic effect of sunitinib and dopamine was demonstrated by the preclinical experiment and confirmed by the developed PK/PD model. In addition, the regimens were optimized by means of modeling as well as simulation, which may be conducive to clinical study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CSC:

Cancer stem cell

DA:

Dopamine

FOCE:

First order conditional estimation

NSCLC:

Non-small-cell lung cancer

PDGFR:

Platelet-derived growth factor receptor

PK/PD:

Pharmacokinetic/pharmacodynamics

SUN:

Sunitinib

VEGFR:

Vascular endothelial growth factor receptor

VPC:

Visual predictive check

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5–29.

    Article  PubMed  Google Scholar 

  2. Li M, Li H, Cheng X, Wang X, Li L, Zhou T, et al. Preclinical pharmacokinetic/pharmacodynamic models to predict schedule-dependent interaction between erlotinib and gemcitabine. Pharm Res. 2013;30(5):1400–8.

    Article  CAS  PubMed  Google Scholar 

  3. Kim S, Ding W, Zhang L, Tian W, Chen S. Clinical response to sunitinib as a multitargeted tyrosine-kinase inhibitor (TKI) in solid cancers: a review of clinical trials. Onco Targets Ther. 2014;7:719–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Lane BR, Derweesh IH, Kim HL, O’Malley R, Klink J, Ercole CE, et al. Presurgical sunitinib reduces tumor size and may facilitate partial nephrectomy in patients with renal cell carcinoma. Urol Oncol. 2015;33(3):112 e15–21.

    Article  Google Scholar 

  5. Wang S, Mou Z, Ma Y, Li J, Li J, Ji X, et al. Dopamine enhances the response of sunitinib in the treatment of drug-resistant breast cancer: Involvement of eradicating cancer stem-like cells. Biochem Pharmacol. 2015;95(2):98–109.

    Article  CAS  PubMed  Google Scholar 

  6. Conley SJ, Gheordunescu E, Kakarala P, Newman B, Korkaya H, Heath AN, et al. Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia. Proc Natl Acad Sci U S A. 2012;109:2784–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105–11.

    Article  CAS  PubMed  Google Scholar 

  8. Fang D, Nguyen TK, Leishear K, Finko R, Kulp AN, Hotz S, et al. A Tumorigenic Subpopulation with Stem Cell Properties in Melanomas. Cancer Res. 2005;65(20):9328–37.

    Article  CAS  PubMed  Google Scholar 

  9. Berns A. Stem cells for lung cancer? Cell. 2005;121(6):811–3.

    Article  CAS  PubMed  Google Scholar 

  10. Lundin A, Driscoll B. Lung cancer stem cells: progress and prospects. Cancer Lett. 2013;338(1):89–93.

    Article  CAS  PubMed  Google Scholar 

  11. Sachlos E, Risueno RM, Laronde S, Shapovalova Z, Lee JH, Russell J, et al. Identification of drugs including a dopamine receptor antagonist that selectively target cancer stem cells. Cell. 2012;149(6):1284–97.

    Article  CAS  PubMed  Google Scholar 

  12. Zakaria N, Yusoff NM, Zakaria Z, Lim MN, Baharuddin PJ, Fakiruddin KS, et al. Human non-small cell lung cancer expresses putative cancer stem cell markers and exhibits the transcriptomic profile of multipotent cells. BMC Cancer. 2015;15:84.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Suleiman AA, Nogova L, Fuhr U. Modeling NSCLC progression: recent advances and opportunities available. AAPS J. 2013;15(2):542–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yuan Y, Zhou X, Ren Y, Zhou S, Wang L, Ji S, et al. Semi-mechanism-based pharmacokinetic/pharmacodynamic model for the combination use of dexamethasone and gemcitabine in breast cancer. J Pharm Sci. 2015;104(12):4399–408.

    Article  CAS  PubMed  Google Scholar 

  15. Ng CM, Patnaik A, Beeram M, Lin CC, Takimoto CH. Mechanism-based pharmacokinetic/pharmacodynamic model for troxacitabine-induced neutropenia in cancer patients. Cancer Chemother Pharmacol. 2011;67(5):985–94.

    Article  CAS  PubMed  Google Scholar 

  16. Hayes S, Mudd Jr PN, Ouellet D, Johnson BM, Williams D, Gibiansky E. Population PK/PD modeling of eltrombopag in subjects with advanced solid tumors with chemotherapy-induced thrombocytopenia. Cancer Chemother Pharmacol. 2013;71(6):1507–20.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang J, Thapar M, Farrell C, Wire MB. Modeling and simulation support eltrombopag dosing in thrombocytopenic patients with chronic HCV infection. Pharm Res. 2015;32(6):2015–28.

    Article  CAS  PubMed  Google Scholar 

  18. Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF, et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst. 2008;100(9):672–9.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang L, Yao HJ, Yu Y, Zhang Y, Li RJ, Ju RJ, et al. Mitochondrial targeting liposomes incorporating daunorubicin and quinacrine for treatment of relapsed breast cancer arising from cancer stem cells. Biomaterials. 2012;33(2):565–82.

    Article  CAS  PubMed  Google Scholar 

  20. Li J, Zhou T. Simultaneous determination of sunitinib and its active metabolites N-desethylsunitinib (SU12662) in nude mice plasma by liquid chromatography tandem mass spectrometry and its application to a pharmacokinetic study. J Chin Pharm Sci. 2015;24(4).

  21. van Erp NP, Gelderblom H, Guchelaar HJ. Clinical pharmacokinetics of tyrosine kinase inhibitors. Cancer Treat Rev. 2009;35(8):692–706.

    Article  PubMed  Google Scholar 

  22. Dopamine: Biological activity. IUPHAR/BPS guide to pharmacology. International Union of Basic and Clinical Pharmacology. Retrieved 29 January 2016.

  23. Bhatt-Mehta V, Nahata MC. Dopamine and dobutamine in pediatric therapy. Phamacotherapy. 1989;9(5):303–14.

    Article  CAS  Google Scholar 

  24. Simeoni M, Maqni P, Cammia C, De Nicolao G, Croci V, Pesenti E, et al. Predictive pharmacokinetic-pharmacodynamic modeling of tumor growth kinetics in xenograft models after administration of anticancer agents. Cancer Res. 2004;64:1094–101.

    Article  CAS  PubMed  Google Scholar 

  25. Koch G, Walz A, Lahu G, Schropp J. Modeling of tumor growth and anticancer effects of combination therapy. J Pharmacokinet Pharmacodyn. 2009;36(2):179–97.

    Article  CAS  PubMed  Google Scholar 

  26. Liu S, Wicha MS. Targeting breast cancer stem cells. J Clin Oncol. 2010;28:4006–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Haznedar JO, Patyna S, Bello CL, Peng GW, Speed W, Yu X, et al. Single- and multiple-dose disposition kinetics of sunitinib malate, a multitargeted receptor tyrosine kinase inhibitor: comparative plasma kinetics in non-clinical species. Cancer Chemother Pharmacol. 2009;64(4):691–706.

    Article  CAS  PubMed  Google Scholar 

  28. Gridelli C, Maione P, Del Gaizo F, Colantuoni G, Guerriero C, Ferrara C, et al. Sorafenib and sunitinib in the treatment of advanced non-small cell lung cancer. Oncologist. 2007;12(2):191–200.

    Article  CAS  PubMed  Google Scholar 

  29. Hong S, Tan M, Wang S, Luo S, Chen Y, Zhang L. Efficacy and safety of angiogenesis inhibitors in advanced non-small cell lung cancer: a systematic review and meta-analysis. J Cancer Res Clin Oncol. 2015;141(5):909–21.

    Article  CAS  PubMed  Google Scholar 

  30. Bernard A, Kimko H, Mital D, Poggesi I. Mathematical modeling of tumor growth and tumor growth inhibition in oncology drug development. Expert Opin Drug Metab Toxicol. 2012;8(9):1057–69.

    Article  CAS  PubMed  Google Scholar 

  31. Li JY, Ren YP, Yuan Y, Ji SM, Zhou SP, Wang LJ, et al. Preclinical PK/PD model for combined administration of erlotinib and sunitinib in the treatment of A549 human NSCLC xenograft mice. Acta Pharmacol Sin. 2016;37(7):930–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rocchetti M, Germani M, Del Bene F, Poggesi I, Magni P, Pesenti E, et al. Predictive pharmacokinetic-pharmacodynamic modeling of tumor growth after administration of an anti-angiogenic agent, bevacizumab, as single-agent and combination therapy in tumor xenografts. Cancer Chemother Pharmacol. 2013;71:1147–57.

    Article  CAS  PubMed  Google Scholar 

  33. Yan Y, Jiang W, Liu L, Wang X, Ding C, Tian Z, et al. Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell. 2015;160(1-2):62–73.

    Article  CAS  PubMed  Google Scholar 

  34. Sarkar C, Chakroborty D, Chowdhury UR, Dasgupta PS, Basu S. Dopamine increases the efficacy of anticancer drugs in breast and colon cancer preclinical models. Clin Cancer Res. 2008;14(8):2502–10.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This study was supported by the National Natural Science Foundation of China. (Grant No. 81473277). The first author of this article was sponsored by the Department of Pharmacometrics of Pfizer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianyan Zhou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Figures Legend

(DOCX 13 kb)

Supplemental Fig. 1

(GIF 104 kb)

High resolution image (TIF 1461 kb)

Supplemental Fig. 2

(GIF 132 kb)

High resolution image (TIF 1565 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, F., Wang, S., Zhu, X. et al. Pharmacokinetic-Pharmacodynamic Modeling of the Anti-Tumor Effect of Sunitinib Combined with Dopamine in the Human Non-Small Cell Lung Cancer Xenograft. Pharm Res 34, 408–418 (2017). https://doi.org/10.1007/s11095-016-2071-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-2071-5

KEY WORDS

Navigation