Skip to main content
Log in

Elucidation of Compression-Induced Surface Crystallization in Amorphous Tablets Using Sum Frequency Generation (SFG) Microscopy

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To investigate the effect of compression on the crystallization behavior in amorphous tablets using sum frequency generation (SFG) microscopy imaging and more established analytical methods.

Method

Tablets containing neat amorphous griseofulvin with/without excipients (silica, hydroxypropyl methylcellulose acetate succinate (HPMCAS), microcrystalline cellulose (MCC) and polyethylene glycol (PEG)) were prepared. They were analyzed upon preparation and storage using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, scanning electron microscopy (SEM) and SFG microscopy.

Results

Compression-induced crystallization occurred predominantly on the surface of the neat amorphous griseofulvin tablets, with minimal crystallinity being detected in the core of the tablets. The presence of various types of excipients was not able to mitigate the compression-induced surface crystallization of the amorphous griseofulvin tablets. However, the excipients affected the crystallization rate of amorphous griseofulvin in the core of the tablet upon compression and storage.

Conclusions

SFG microscopy can be used in combination with ATR-FTIR spectroscopy and SEM to understand the crystallization behaviour of amorphous tablets upon compression and storage. When selecting excipients for amorphous formulations, it is important to consider the effect of the excipients on the physical stability of the amorphous formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

ATR-FTIR:

Attenuated total reflectance Fourier transform infrared

DSC:

Differential scanning calorimetry

HPMCAS:

Hydroxypropyl methylcellulose acetate succinate

HyD:

Hybrid detector

IR:

Infrared

MCC:

Microcrystalline cellulose

NMR:

Nuclear magnetic resonance

OPO:

Optical parametric oscillator

PEG:

Polyethylene glycol

PMT:

Photomultiplier tube

SEM:

Scanning electron microscopy

SFG:

Sum frequency generation

SHG:

Second harmonic generation

XRPD:

X-ray powder diffractometry

REFERENCES

  1. Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods. 2000;44(1):235–49.

    Article  CAS  Google Scholar 

  2. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Deliv Rev. 2012;64, Supplement:4–17.

  3. Elder DP, Holm R, Diego HL. Use of pharmaceutical salts and cocrystals to address the issue of poor solubility. Int J Pharm. 2013;453(1):88–100.

    Article  CAS  Google Scholar 

  4. Kurkov SV, Loftsson T. Cyclodextrins. Int J Pharm. 2013;453(1):167–80.

    Article  CAS  Google Scholar 

  5. Lu Y, Park K. Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int J Pharm. 2013;453(1):198–214.

    Article  CAS  Google Scholar 

  6. Möschwitzer JP. Drug nanocrystals in the commercial pharmaceutical development process. Int J Pharm. 2013;453(1):142–56.

    Article  Google Scholar 

  7. Mu H, Holm R, Müllertz A. Lipid-based formulations for oral administration of poorly water-soluble drugs. Int J Pharm. 2013;453(1):215–24.

    Article  CAS  Google Scholar 

  8. Kawakami K. Current status of amorphous formulation and other special dosage forms as formulations for early clinical phases. J Pharm Sci. 2009;98(9):2875–85.

    Article  CAS  Google Scholar 

  9. Babu NJ, Nangia A. Solubility advantage of amorphous drugs and pharmaceutical cocrystals. Cryst Growth Des. 2011;11(7):2662–79.

    Article  CAS  Google Scholar 

  10. Laitinen R, Löbmann K, Strachan CJ, Grohganz H, Rades T. Emerging trends in the stabilization of amorphous drugs. Int J Pharm. 2013;453(1):65–79.

    Article  CAS  Google Scholar 

  11. Hancock BC, Zografi G. Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci. 1997;86(1):1–12.

    Article  CAS  Google Scholar 

  12. Yu L. Amorphous pharmaceutical solids: preparation, characterization and stabilization. Adv Drug Deliv Rev. 2001;48(1):27–42.

    Article  CAS  Google Scholar 

  13. Ayenew Z, Paudel A, Rombaut P, Mooter G. Effect of compression on non-isothermal crystallization behaviour of amorphous indomethacin. Pharm Res. 2012;29(9):2489–98.

    Article  CAS  Google Scholar 

  14. Thakral NK, Mohapatra S, Stephenson GA, Suryanarayanan R. Compression-induced crystallization of amorphous indomethacin in tablets: characterization of spatial heterogeneity by two-dimensional X-ray diffractometry. Mol Pharm. 2015;12(1):253–63.

    Article  CAS  Google Scholar 

  15. Shah B, Kakumanu VK, Bansal AK. Analytical techniques for quantification of amorphous/crystalline phases in pharmaceutical solids. J Pharm Sci. 2006;95(8):1641–65.

    Article  CAS  Google Scholar 

  16. Chieng N, Rades T, Aaltonen J. An overview of recent studies on the analysis of pharmaceutical polymorphs. J Pharm Biomed Anal. 2011;55(4):618–44.

    Article  CAS  Google Scholar 

  17. Widjaja E, Kanaujia P, Lau G, Ng WK, Garland M, Saal C, et al. Detection of trace crystallinity in an amorphous system using Raman microscopy and chemometric analysis. Eur J Pharm Sci. 2011;42(1–2):45–54.

    Article  CAS  Google Scholar 

  18. Kanaujia P, Lau G, Ng WK, Widjaja E, Schreyer M, Hanefeld A, et al. Investigating the effect of moisture protection on solid-state stability and dissolution of fenofibrate and ketoconazole solid dispersions using PXRD, HSDSC and Raman microscopy. Drug Dev Ind Pharm. 2011;37(9):1026–35.

    Article  CAS  Google Scholar 

  19. Lee CJ, Strachan CJ, Manson PJ, Rades T. Characterization of the bulk properties of pharmaceutical solids using nonlinear optics - a review. J Pharm Pharmacol. 2007;59(2):241–50.

    Article  CAS  Google Scholar 

  20. Schneider L, Peukert W. Second harmonic generation spectroscopy as a method for in situ and online characterization of particle surface properties. Part Part Syst Charact. 2006;23(5):351–9.

    Article  Google Scholar 

  21. Strachan CJ, Windbergs M, Offerhaus HL. Pharmaceutical applications of non-linear imaging. Int J Pharm. 2011;417(1–2):163–72.

    Article  CAS  Google Scholar 

  22. Shen Y. Surface properties probed by second-harmonic and sum-frequency generation. Nature. 1989;337:519–25.

    Article  CAS  Google Scholar 

  23. Zumbusch A, Holtom GR, Xie XS. Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering. Phys Rev Lett. 1999;82(20):4142.

    Article  CAS  Google Scholar 

  24. Strachan CJ, Lee CJ, Rades T. Partial characterization of different mixtures of solids by measuring the optical nonlinear response. J Pharm Sci. 2004;93(3):733–42.

    Article  CAS  Google Scholar 

  25. Chowdhury AU, Zhang S, Simpson GJ. Powders analysis by second harmonic generation microscopy. Anal Chem. 2016;88(7):3853–63.

    Article  CAS  Google Scholar 

  26. Schmitt PD, Trasi NS, Taylor LS, Simpson GJ. Finding the needle in the haystack: characterization of trace crystallinity in a commercial formulation of paclitaxel protein-bound particles by Raman spectroscopy enabled by second harmonic generation microscopy. Mol Pharm. 2015;12(7):2378–83.

    Article  CAS  Google Scholar 

  27. Zhu Q, Harris MT, Taylor LS. Modification of crystallization behavior in drug/polyethylene glycol solid dispersions. Mol Pharm. 2012;9(3):546–53.

    Article  CAS  Google Scholar 

  28. Zhu Q, Toth SJ, Simpson GJ, Hsu H-Y, Taylor LS, Harris MT. Crystallization and dissolution behavior of naproxen/polyethylene glycol solid dispersions. J Phys Chem B. 2013;117(5):1494–500.

    Article  CAS  Google Scholar 

  29. Wanapun D, Kestur US, Kissick DJ, Simpson GJ, Taylor LS. Selective detection and quantitation of organic molecule crystallization by second harmonic generation microscopy. Anal Chem. 2010;82(13):5425–32.

    Article  CAS  Google Scholar 

  30. Wanapun D, Kestur US, Taylor LS, Simpson GJ. Single particle nonlinear optical imaging of trace crystallinity in an organic powder. Anal Chem. 2011;83(12):4745–51.

    Article  CAS  Google Scholar 

  31. Kestur US, Wanapun D, Toth SJ, Wegiel LA, Simpson GJ, Taylor LS. Nonlinear optical imaging for sensitive detection of crystals in bulk amorphous powders. J Pharm Sci. 2012;101(11):4201–13.

    Article  CAS  Google Scholar 

  32. Hsu H-Y, Toth SJ, Simpson GJ, Taylor LS, Harris MT. Effect of substrates on naproxen-polyvinylpyrrolidone solid dispersions formed via the drop printing technique. J Pharm Sci. 2013;102(2):638–48.

    Article  Google Scholar 

  33. Mahieu A, Willart J-F, Dudognon E, Eddleston MD, Jones W, Danède F, et al. On the polymorphism of griseofulvin: identification of two additional polymorphs. J Pharm Sci. 2013;102(2):462–8.

    Article  CAS  Google Scholar 

  34. Pan Q, Guo P, Duan J, Cheng Q, Li H. Comparative crystal structure determination of griseofulvin: powder X-ray diffraction versus single-crystal X-ray diffraction. Chin Sci Bull. 2012;57(30):3867–71.

    Article  CAS  Google Scholar 

  35. Zoumi A, Yeh A, Tromberg BJ. Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence. Proc Natl Acad Sci. 2002;99(17):11014–9.

    Article  CAS  Google Scholar 

  36. Gallais L, Douti D-B, Commandre M, Batavičiūtė G, Pupka E, Ščiuka M, et al. Wavelength dependence of femtosecond laser-induced damage threshold of optical materials. J Appl Phys. 2015;117(22):223103.

    Article  Google Scholar 

  37. Watanabe T, Wakiyama N, Usui F, Ikeda M, Isobe T, Senna M. Stability of amorphous indomethacin compounded with silica. Int J Pharm. 2001;226(1–2):81–91.

    Article  CAS  Google Scholar 

  38. Wang L, Cui FD, Sunada H. Preparation and evaluation of solid dispersions of nitrendipine prepared with fine silica particles using the melt-mixing method. Chem Pharm Bull. 2006;54(1):37–43.

    Article  Google Scholar 

  39. Hellrup J, Alderborn G, Mahlin D. Inhibition of recrystallization of amorphous lactose in nanocomposites formed by spray-drying. J Pharm Sci. 2015;104(11):3760–9.

    Article  CAS  Google Scholar 

  40. Ellison CD, Ennis BJ, Hamad ML, Lyon RC. Measuring the distribution of density and tabletting force in pharmaceutical tablets by chemical imaging. J Pharm Biomed Anal. 2008;48(1):1–7.

    Article  CAS  Google Scholar 

  41. De Figueiredo LP, Ferreira FF. The Rietveld method as a tool to quantify the amorphous amount of microcrystalline cellulose. J Pharm Sci. 2014;103(5):1394–9.

    Article  Google Scholar 

  42. Takahashi Y, Tadokoro H. Structural studies of polyethers,(−(CH2)mO-)n. X. Crystal structure of poly (ethylene oxide). Macromolecules. 1973;6(5):672–5.

    Article  CAS  Google Scholar 

  43. Pielichowska K, Głowinkowski S, Lekki J, Biniaś D, Pielichowski K, Jenczyk J. PEO/fatty acid blends for thermal energy storage materials. Structural/morphological features and hydrogen interactions. Eur Polym J. 2008;44(10):3344–60.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This study was partially supported by the Pharmacy Grant 2013 (University of Helsinki). Elman Poole Travelling Fellowship and the University of Otago Doctoral Scholarship are gratefully acknowledged for providing Pei Ting Mah with financial support. Timo Laaksonen acknowledges funding from the Academy of Finland grant no. 258114.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antti Isomäki.

Additional information

Dunja Novakovic and Jukka Saarinen contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 653 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mah, P.T., Novakovic, D., Saarinen, J. et al. Elucidation of Compression-Induced Surface Crystallization in Amorphous Tablets Using Sum Frequency Generation (SFG) Microscopy. Pharm Res 34, 957–970 (2017). https://doi.org/10.1007/s11095-016-2046-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-2046-6

KEY WORDS

Navigation