Skip to main content
Log in

Development of Thiolated-Graphene Quantum Dots for Regulation of ROS in macrophages

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

The current study was designed to develop thiolated-graphene quantum dots (SH-GQDs) as a theranostic nanocarrier and evaluate its potential for the optimal scavenging of reactive oxygen species (ROS) in macrophages.

Methods

SH-GQDs were prepared by hydrothermal pyrolysis of carbon source (citric acid) in the presence of reduced-glutathione (GSH). Raw264.7 cells were treated with varying concentrations of oxLDL (0.5, 1 and 2 μg/ml) in the presence or absence of SH-GQDs and cells were stained with peroxide-sensitive fluorescent dye (DCFDA). Flow cytometry analysis was performed to investigate the expression of MSR and ATP-binding cassette transporter (ABCA1) after such treatments as the negative control, oxLDL treatment and oxLDL treatment in the presence of either GQDs or SH-GQDs.

Results

SH-GQDs had a size ranging from 10 to 30 nm with an average size of 21.3 ± 5.2 nm. The elemental analysis indicated that SH-GQDs are mainly composed of carbon, nitrogen, oxygen and sulfur. The expression levels of ABCA1 in macrophages treated with either LDL or oxLDL were lower than those treated with the media control (the negative control: 100 ± 7.6%; LDL: 82.7 ± 1.2%; and oxLDL: 79.2 ± 1.7%). The level of ABCA1 expression increased as cells were incubated with SH-GQDs (SH-GQDs: 101.5 ± 3.1%). The level of MSR on the surface of macrophages upon being treated with SH-GQDs was lower than those with oxLDL (oxLDL: 112.1 ± 8.8% and SH-GQDs: 91.5 ± 4.2%).

Conclusion

The enhancement of lipid efflux and down-regulation of MSR in macrophages by SH-GQDs supported its promising usage as a theranostic nanocarrier to prevent foam cell formation and plaque development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ABCA1:

ATP-binding cassette transporter

DCFDA:

Dichlorofluorescin diacetate

EDX:

Energy dispersive X-ray spectroscopy

HDL:

High density lipoprotein

LDL:

Low density lipoprotein

MSR:

Macrophage scavenger receptor

oxLDL:

oxidized-low density lipoprotein

ROS:

Reactive oxygen species

SH-GQDs:

Thiolated-graphene quantum dots

References

  1. Yan ZQ, Hansson GK. Innate immunity, macrophage activation, and atherosclerosis. Immunol Rev. 2007;219:187–203.

    Article  CAS  PubMed  Google Scholar 

  2. Rader DJ, Pure E. Lipoproteins, macrophage function, and atherosclerosis: beyond the foam cell? Cell Metab. 2005;1(4):223–30.

    Article  CAS  PubMed  Google Scholar 

  3. Rajpathak SN, Kumbhani DJ, Crandall J, Barzilai N, Alderman M, Ridker PM. Statin therapy and risk of developing type 2 diabetes: a meta-analysis. Diabetes Care. 2009;32(10):1924–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cho HJ, Shashkin P, Gleissner CA, Dunson D, Jain N, Lee JK, et al. Induction of dendritic cell-like phenotype in macrophages during foam cell formation. Physiol Genomics. 2007;29(2):149–60.

    Article  CAS  PubMed  Google Scholar 

  5. Tall AR, Yvan-Charvet L. Cholesterol, inflammation and innate immunity. Nat Rev Immunol. 2015;15(2):104–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kelley JL, Ozment TR, Li C, Schweitzer JB, Williams DL. Scavenger receptor-a (CD204): a two-edged sword in health and disease. Crit Rev Immunol. 2014;34(3):241–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hao S, Ji J, Zhao H, Shang L, Wu J, Li H, et al. Mitochondrion-targeted peptide SS-31 inhibited oxidized Low-density lipoproteins-induced foam cell formation through both ROS scavenging and inhibition of cholesterol influx in RAW264.7 cells. Molecules. 2015;20(12):21287–97.

    Article  CAS  PubMed  Google Scholar 

  8. Schiener M, Hossann M, Viola JR, Ortega-Gomez A, Weber C, Lauber K, et al. Nanomedicine-based strategies for treatment of atherosclerosis. Trends Mol Med. 2014;20(5):271–81.

    Article  CAS  PubMed  Google Scholar 

  9. Lewis DR, Petersen LK, York AW, Zablocki KR, Joseph LB, Kholodovych V, et al. Sugar-based amphiphilic nanoparticles arrest atherosclerosis in vivo. Proc Natl Acad Sci U S A. 2015;112(9):2693–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jain KK. Nanotechnology in clinical laboratory diagnostics. Clin Chim Acta. 2005;358(1–2):37–54.

    Article  CAS  PubMed  Google Scholar 

  11. Grodzinski P, Silver M, Molnar LK. Nanotechnology for cancer diagnostics: promises and challenges. Expert Rev Mol Diagn. 2006;6(3):307–18.

    Article  CAS  PubMed  Google Scholar 

  12. Prados J, Melguizo C, Perazzoli G, Cabeza L, Carrasco E, Oliver J, et al. Application of nanotechnology in the treatment and diagnosis of gastrointestinal cancers: review of recent patents. Recent Pat Anticancer Drug Discov. 2014;9(1):21–34.

    Article  CAS  PubMed  Google Scholar 

  13. Peterson MD, Cass LC, Harris RD, Edme K, Sung K, Weiss EA. The role of ligands in determining the exciton relaxation dynamics in semiconductor quantum dots. Annu Rev Phys Chem. 2014;65:317–39.

    Article  CAS  PubMed  Google Scholar 

  14. Wang X, Sun X, Lao J, He H, Cheng T, Wang M, et al. Multifunctional graphene quantum dots for simultaneous targeted cellular imaging and drug delivery. Colloids Surf B: Biointerfaces. 2014;122:638–44.

    Article  CAS  PubMed  Google Scholar 

  15. Raucci MG, Giugliano D, Longo A, Zeppetelli S, Carotenuto G, Ambrosio L. Comparative facile methods for preparing graphene oxide-hydroxyapatite for bone tissue engineering. J Tissue Eng Regen Med. 2016.

  16. Oh B, Lee CH. Development of Man-rGO for targeted eradication of macrophage ablation. Mol Pharm. 2015;12(9):3226–36.

    Article  CAS  PubMed  Google Scholar 

  17. Chandra S, Patra P, Pathan SH, Roy S, Mitra S, Layek A, et al. Luminescent S-doped carbon dots: an emergent architecture for multimodal applications. J Mater Chem B. 2013;1:2375–82.

    Article  CAS  Google Scholar 

  18. Zhuang ZP, Kung MP, Wilson A, Lee CW, Plossl K, Hou C, et al. Structure-activity relationship of imidazo[1,2-a]pyridines as ligands for detecting beta-amyloid plaques in the brain. J Med Chem. 2003;46(2):237–43.

    Article  CAS  PubMed  Google Scholar 

  19. Jindal AB, Wasnik MN, Nair HA. Synthesis of thiolated alginate and evaluation of mucoadhesiveness, cytotoxicity and release retardant properties. Indian J Pharm Sci. 2010;72(6):766–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Song Y, Qu K, Zhao C, Ren J, Qu X. Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater. 2010;22(19):2206–10.

    Article  CAS  PubMed  Google Scholar 

  21. Sun H, Gao N, Dong K, Ren J, Qu X. Graphene quantum dots-band-aids used for wound disinfection. ACS Nano. 2014;8(6):6202–10.

    Article  CAS  PubMed  Google Scholar 

  22. Oh B, Lee CH. Nanofiber-coated drug eluting stent for the stabilization of mast cells. Pharm Res. 2014.

  23. Ogi T, Iwasaki H, Aishima K, Iskandar F, Wang WN, Takimiya K, et al. Transient nature of graphene quantum dot formation via a hydrothermal reaction. RSC Adv. 2014;4:55709–15.

    Article  CAS  Google Scholar 

  24. Dong Y, Pang H, Yang HB, Guo C, Shao J, Chi Y, et al. Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew Chem Int Ed Engl. 2013;52(30):7800–4.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang BX, Gao H, Li XL. Synthesis and optical properties of nitrogen and sulfur co-doped graphene quantum dots. New J Chem. 2014;38:4615–21.

    Article  CAS  Google Scholar 

  26. Liu C, Zhang P, Zhai X, Tian F, Li W, Yang J, et al. Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials. 2012;33(13):3604–13.

    Article  CAS  PubMed  Google Scholar 

  27. Zhuo Y, Miao H, Zhong D, Zhu S, Yang X. One-step synthesis of high quantum-yield and excitation-independent emission carbon dots for cell imaging. Mater Lett. 2015;139:197–200.

    Article  CAS  Google Scholar 

  28. Qu D, Zheng M, Du P, Zhou Y, Zhang L, Li D, et al. Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale. 2013;5(24):12272–7.

    Article  CAS  PubMed  Google Scholar 

  29. Gungor N, Ozyurek M, Guclu K, Cekic SD, Apak R. Comparative evaluation of antioxidant capacities of thiol-based antioxidants measured by different in vitro methods. Talanta. 2011;83(5):1650–8.

    Article  CAS  PubMed  Google Scholar 

  30. Riener CK, Kada G, Gruber HJ. Quick measurement of protein sulfhydryls with Ellman’s reagent and with 4,4′-dithiodipyridine. Anal Bioanal Chem. 2002;373(4–5):266–76.

    Article  CAS  PubMed  Google Scholar 

  31. Fenton HJH. LXXIII.—Oxidation of tartaric acid in presence of iron. J Chem Soc Trans. 1894;65:899–910.

    Article  CAS  Google Scholar 

  32. Méndez-Barbero N, Esteban V, Villahoz S, Escolano A, Urso K, Alfranca A, et al. A major role for RCAN1 in atherosclerosis progression. EMBO Mol Med. 2013;5(12):1901–17.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hansson GK, Hermansson A. The immune system in atherosclerosis. Nat Immunol. 2011;12(3):204–12.

    Article  CAS  PubMed  Google Scholar 

  34. Giovannini C, Scazzocchio B, Matarrese P, Vari R, D’Archivio M, Di Benedetto R, et al. Apoptosis induced by oxidized lipids is associated with up-regulation of p66Shc in intestinal Caco-2 cells: protective effects of phenolic compounds. J Nutr Biochem. 2008;19(2):118–28.

    Article  CAS  PubMed  Google Scholar 

  35. Yang X, Yao H, Chen Y, Sun L, Li Y, Ma X, et al. Inhibition of glutathione production induces macrophage CD36 expression and enhances cellular-oxidized Low density lipoprotein (oxLDL) uptake. J Biol Chem. 2015;290(36):21788–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang N, Lan D, Chen W, Matsuura F, Tall AR. ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins. Proc Natl Acad Sci U S A. 2004;101(26):9774–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chistiakov DA, Bobryshev YV, Orekhov AN. Macrophage-mediated cholesterol handling in atherosclerosis. J Cell Mol Med. 2016;20(1):17–28.

    Article  CAS  PubMed  Google Scholar 

  38. Tarhda Z, Semlali O, Kettani A, Moussa A, Abumrad NA, Ibrahimi A. Three dimensional structure prediction of fatty acid binding site on human transmembrane receptor CD36. Bioinform Biol Insights. 2013;7:369–73.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi H. Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, B., Lee, C.H. Development of Thiolated-Graphene Quantum Dots for Regulation of ROS in macrophages. Pharm Res 33, 2736–2747 (2016). https://doi.org/10.1007/s11095-016-2000-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-2000-7

KEY WORDS

Navigation