Skip to main content
Log in

Preparation and Characterization of Gelonin-Melittin Fusion Biotoxin for Synergistically Enhanced Anti-Tumor Activity

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To investigate the applicability of fusion biotoxins combining pore-forming toxins (PFTs) and ribosome-inactivating proteins (RIPs) for the anti-cancer treatment.

Methods

Membrane active PFTs tend to destabilize cell membranes of tumor cells, but lack a warhead inducing significant cause of cell death. Cell-impermeable RIPs possess a powerful warhead, yet not able to enter the tumor cells. To address these challenges for anti-tumor effects, we introduced a fusion strategy of conjugating melittin (a PFT) and gelonin (a type 1 RIP) via chemical and recombinant methods, followed by in vitro assays and in vivo animal studies.

Results

In vitro characterization results confirmed that the chimeric gelonin-melittin fusion proteins retained equivalent intrinsic activity to that of unmodified gelonin in inhibiting protein translation. However, chemically conjugated gelonin-melittin (cGel-Mel) and recombinant chimeric gelonin-melittin fusion (rGel-Mel) exhibited greater cell uptake, yielding a significantly enhanced cytotoxic activity over treatment of gelonin, melittin or physical mixture of gelonin and melittin. Remarkably, cGel-Mel and rGel-Mel displayed 32- and 10-fold lower IC50 than gelonin in the cell lines. The superior anti-tumor efficacy of multivalent cGel-Mel to monovalent rGel-Mel suggested that valency could be a crucial factor for the extent of melittin-mediated cell uptake. Tumoricidal effects observed from animal studies were in good accordance with our findings from the cellular assays.

Conclusions

This study successfully demonstrated that fusion of biotoxins could provide a simple yet effective way to synergistically augment their anti-tumor activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

cGel-Mel:

Chemically conjugated gelonin-melittin

DMEM:

Dulbecco’s modified eagle medium

EDTA:

Ethylenediaminetetraacetic acid

F.I.:

Fluorescence intensity

FBS:

Fetal bovine serum

G/M:

Mixture of gelonin and melittin

Gelonin-SH:

Thiol activated-gelonin

HPLC:

High performance liquid chromatography

IPTG:

Isopropyl-β-D-thiogalactopyranoside

MWCO:

Molecular weight cut-off

NHS-PEG-PDP:

Pyridyldithio polyethylene glycol succinimidylpropionate

PFTs:

Pore-forming toxins

rGel-Mel:

Recombinant gelonin-melittin fusion chimera

RIPs:

Ribosome-inactivating proteins

TRITC:

Rhodamine B isothiocyanate

References

  1. Henriques ST, Melo MN, Castanho MA. Cell-penetrating peptides and antimicrobial peptides: how different are they? Biochem J. 2006;399(1):1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rádis-Baptista G, Kerkis A, Prieto-Silva ÁR, Hayashi MAF, Kerkis I, Tetsuo Y. Membrane-translocating peptides and toxins: from nature to bedside. J Braz Chem Soc. 2008;19:211–25.

    Article  Google Scholar 

  3. de Virgilio M, Lombardi A, Caliandro R, Fabbrini MS. Ribosome-inactivating proteins: from plant defense to tumor attack. Toxins (Basel). 2010;2(11):2699–737.

    Article  Google Scholar 

  4. Jo M, Park MH, Kollipara PS, An BJ, Song HS, Han SB, et al. Anti-cancer effect of bee venom toxin and melittin in ovarian cancer cells through induction of death receptors and inhibition of JAK2/STAT3 pathway. Toxicol Appl Pharmacol. 2012;258(1):72–81.

    Article  CAS  PubMed  Google Scholar 

  5. Anderluh G, Lakey JH. Proteins: membrane binding and pore formation. New York: Springer Science & Business Media; 2011.

    Google Scholar 

  6. Terwilliger TC, Eisenberg D. The structure of melittin. II. Interpretation of the structure. J Biol Chem. 1982;257(11):6016–22.

    CAS  PubMed  Google Scholar 

  7. Gajski G, Garaj-Vrhovac V. Melittin: a lytic peptide with anticancer properties. Environ Toxicol Pharmacol. 2013;36(2):697–705.

    Article  CAS  PubMed  Google Scholar 

  8. Huh JE, Kang JW, Nam D, Baek YH, Choi DY, Park DS, et al. Melittin suppresses VEGF-A-induced tumor growth by blocking VEGFR-2 and the COX-2-mediated MAPK signaling pathway. J Nat Prod. 2012;75(11):1922–9.

    Article  CAS  PubMed  Google Scholar 

  9. Matsuzaki K, Yoneyama S, Miyajima K. Pore formation and translocation of melittin. Biophys J. 1997;73(2):831–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pan H, Soman NR, Schlesinger PH, Lanza GM, Wickline SA. Cytolytic peptide nanoparticles (‘NanoBees’) for cancer therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2011;3(3):318–27.

    Article  CAS  PubMed  Google Scholar 

  11. Zhu W, Sun M, Wang Y, de Sun J, Zhang S. Expression and functional characterization of a recombinant targeted toxin with an uPA cleavable linker in Pichia pastoris. Protein Expr Purif. 2011;76(2):184–9.

    Article  CAS  PubMed  Google Scholar 

  12. Puri M, Kaur I, Perugini MA, Gupta RC. Ribosome-inactivating proteins: current status and biomedical applications. Drug Discov Today. 2012;17(13–14):774–83.

    Article  CAS  PubMed  Google Scholar 

  13. Endo Y, Mitsui K, Motizuki M, Tsurugi K. The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. The site and the characteristics of the modification in 28 S ribosomal RNA caused by the toxins. J Biol Chem. 1987;262(12):5908–12.

    CAS  PubMed  Google Scholar 

  14. Stirpe F, Olsnes S, Pihl A. Gelonin, a new inhibitor of protein synthesis, nontoxic to intact cells. Isolation, characterization, and preparation of cytotoxic complexes with concanavalin A. J Biol Chem. 1980;255(14):6947–53.

    CAS  PubMed  Google Scholar 

  15. Atkinson SF, Bettinger T, Seymour LW, Behr JP, Ward CM. Conjugation of folate via gelonin carbohydrate residues retains ribosomal-inactivating properties of the toxin and permits targeting to folate receptor positive cells. J Biol Chem. 2001;276(30):27930–5.

    Article  CAS  PubMed  Google Scholar 

  16. Weidle UH, Tiefenthaler G, Schiller C, Weiss EH, Georges G, Brinkmann U. Prospects of bacterial and plant protein-based immunotoxins for treatment of cancer. Cancer Genomics Proteomics. 2014;11(1):25–38.

    PubMed  Google Scholar 

  17. Shin MC, Zhang J, Min KA, He H, David AE, Huang Y, et al. PTD-modified ATTEMPTS for enhanced toxin-based cancer therapy: an in vivo proof-of-concept study. Pharm Res. 2015;32(8):2690–703.

    CAS  PubMed  Google Scholar 

  18. Liu M, Zong J, Liu Z, Li L, Zheng X, Wang B, et al. A novel melittin-MhIL-2 fusion protein inhibits the growth of human ovarian cancer SKOV3 cells in vitro and in vivo tumor growth. Cancer Immunol Immunother. 2013;62(5):889–95.

    Article  CAS  PubMed  Google Scholar 

  19. Hou KK, Pan H, Ratner L, Schlesinger PH, Wickline SA. Mechanisms of nanoparticle-mediated siRNA transfection by melittin-derived peptides. ACS Nano. 2013;7(10):8605–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huang C, Jin H, Qian Y, Qi S, Luo H, Luo Q, et al. Hybrid melittin cytolytic Peptide-driven ultrasmall lipid nanoparticles block melanoma growth in vivo. ACS Nano. 2013;7(7):5791–800.

    Article  CAS  PubMed  Google Scholar 

  21. Sprintz M, Benedetti C, Ferrari M. Applied nanotechnology for the management of breakthrough cancer pain. Minerva Anestesiol. 2005;71(7–8):419–23.

    CAS  PubMed  Google Scholar 

  22. Weyergang A, Selbo PK, Berg K. Photochemically stimulated drug delivery increases the cytotoxicity and specificity of EGF-saporin. J Control Release. 2006;111(1–2):165–73.

    Article  CAS  PubMed  Google Scholar 

  23. Madhumathi J, Verma RS. Therapeutic targets and recent advances in protein immunotoxins. Curr Opin Microbiol. 2012;15(3):300–9.

    Article  CAS  PubMed  Google Scholar 

  24. Shin MC, Zhao J, Zhang J, Huang Y, He H, Wang M, et al. Recombinant TAT-gelonin fusion toxin: synthesis and characterization of heparin/protamine-regulated cell transduction. J Biomed Mater Res A. 2015;103(1):409–19.

    Article  PubMed  Google Scholar 

  25. Lee TY, Park YS, Garcia GA, Sunahara RK, Woods JH, Yang VC. Cell permeable cocaine esterases constructed by chemical conjugation and genetic recombination. Mol Pharm. 2012;9(5):1361–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Stirpe F, Battelli MG. Ribosome-inactivating proteins: progress and problems. Cell Mol Life Sci. 2006;63(16):1850–66.

    Article  CAS  PubMed  Google Scholar 

  27. Thrush GR, Lark LR, Clinchy BC, Vitetta ES. Immunotoxins: an update. Annu Rev Immunol. 1996;14:49–71.

    Article  CAS  PubMed  Google Scholar 

  28. Orsolic N. Bee venom in cancer therapy. Cancer Metastasis Rev. 2012;31(1–2):173–94.

    Article  CAS  PubMed  Google Scholar 

  29. Dempsey CE. The actions of melittin on membranes. Biochim Biophys Acta. 1990;1031(2):143–61.

    Article  CAS  PubMed  Google Scholar 

  30. Rosenblum MG, Marks JW, Cheung LH. Comparative cytotoxicity and pharmacokinetics of antimelanoma immunotoxins containing either natural or recombinant gelonin. Cancer Chemother Pharmacol. 1999;44(4):343–8.

    Article  CAS  PubMed  Google Scholar 

  31. Rex S, Schwarz G. Quantitative studies on the melittin-induced leakage mechanism of lipid vesicles. Biochemistry. 1998;37(8):2336–45.

    Article  CAS  PubMed  Google Scholar 

  32. Smith R, Separovic F, Milne TJ, Whittaker A, Bennett FM, Cornell BA, et al. Structure and orientation of the pore-forming peptide, melittin, in lipid bilayers. J Mol Biol. 1994;241(3):456–66.

    Article  CAS  PubMed  Google Scholar 

  33. Allende D, Simon SA, McIntosh TJ. Melittin-induced bilayer leakage depends on lipid material properties: evidence for toroidal pores. Biophys J. 2005;88(3):1828–37.

    Article  CAS  PubMed  Google Scholar 

  34. Lee MT, Sun TL, Hung WC, Huang HW. Process of inducing pores in membranes by melittin. Proc Natl Acad Sci U S A. 2013;110(35):14243–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu H, Han Y, Fu H, Liu M, Wu J, Chen X, et al. Construction and expression of sTRAIL-melittin combining enhanced anticancer activity with antibacterial activity in Escherichia coli. Appl Microbiol Biotechnol. 2013;97(7):2877–84.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This work was partially supported by the NSFC 2013 A3 Foresight Program (81361140344), National Key Basic Research Program of China (2013CB932502) and National Natural Science Foundation of China (NSFC, 81402856). In addition, this work was also supported in part by National Institutes of Health R01 Grants CA114612 and grants from Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2015R1A6A3A01020598 & NRF-2015R1C1A1A02036781). We thank Dr. Wolfgang E. Trommer (University of Kaiserslautern, Germany) for the gelonin expression vector (pET28a-Gel).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor C. Yang.

Additional information

Meong Cheol Shin and Kyoung Ah Min contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, M.C., Min, K.A., Cheong, H. et al. Preparation and Characterization of Gelonin-Melittin Fusion Biotoxin for Synergistically Enhanced Anti-Tumor Activity. Pharm Res 33, 2218–2228 (2016). https://doi.org/10.1007/s11095-016-1959-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-1959-4

KEY WORDS

Navigation