Skip to main content

Advertisement

Log in

Nanoparticle Attachment to Erythrocyte Via the Glycophorin A Targeted ERY1 Ligand Enhances Binding without Impacting Cellular Function

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Nanoparticle (NP) attachment to biocompatible secondary carriers such as red blood cell (RBC) can prolong blood residence time of drug molecules and help create next-generation nanotherapeutics. However, little is known about the impact of RBC-targeted NPs on erythrocyte function.

Methods

The objectives of this study were to develop and characterize in vitro a novel poly-L-lysine (PLL) and polyethylene glycol (PEG) copolymer-based NP containing fluorescent-tagged bovine serum albumin (BSA), and conjugated with ERY1, a 12 amino acid peptide with high affinity for the RBC membrane protein glycophorin A (ENP).

Results

Confocal and flow cytometry data suggest that ENPs efficiently and irreversibly bind to RBC, with approximately 70% of erythrocytes bound after 24 h in a physiologic flow loop model compared to 10% binding of NPs without ERY1. Under these conditions, synthesized ENPs were not toxic to the RBCs. The rheological parameters at the applied shear. (0–15 Pa) were not influenced by ENP attachment to the RBCs. However, at high concentration, the strong affinity of ENPs to the glycophorin-A reduced the deformability of the RBC.

Conclusions

ENPs can be efficiently attached to the RBCs without adversely affecting cellular function, and this may potentially enhance circulatory half-life of drug molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

BNP:

BSA-NPs

BSA:

Bovine serum albumin

ENP:

ERY1-BSA NPs

GPA:

Glycophorin A

GSH:

Glutathione

MDA:

Malondialdehyde

MIS:

Mismatch peptide

MNP:

MIS-BSA NPs

NP:

Nanoparticle

PDI:

Polydispersity index

PEG:

Polyethylene glycol

PLL:

Poly L-lysine

RBCs:

Red blood cells

TBARS:

Thiobarbituric acid reactive substances

TCA:

Trichloroacetic acid

References

  1. Ranjan A, Jacobs GC, Woods DL, Negussie AH, Partanen A, Yarmolenko PS, et al. Image-guided drug delivery with magnetic resonance guided high intensity focused ultrasound and temperature sensitive liposomes in a rabbit Vx2 tumor model. J Control Release: Off J Control Release Soc. 2012;158(3):487–94.

    Article  CAS  Google Scholar 

  2. Hu CM, Zhang L. Therapeutic nanoparticles to combat cancer drug resistance. Curr Drug Metab. 2009;10(8):836–41.

    Article  CAS  PubMed  Google Scholar 

  3. Jokerst JV, Lobovkina T, Zare RN, Gambhir SS. Nanoparticle PEGylation for imaging and therapy. Nanomedicine (London, England). 2011;6(4):715–28.

    Article  CAS  Google Scholar 

  4. De Jong WH, Borm PJA. Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine. 2008;3(2):133–49.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release. 2001;70(1–2):1–20.

    Article  CAS  PubMed  Google Scholar 

  6. O’Brien ME, Wigler N, Inbar M, Rosso R, Grischke E, Santoro A, et al. Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX/Doxil) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Annals Oncol: Off J Eur Soc Med Oncol / ESMO. 2004;15(3):440–9.

    Article  Google Scholar 

  7. Ahmed M, Lukyanov AN, Torchilin V, Tournier H, Schneider AN, Goldberg SN. Combined radiofrequency ablation and adjuvant liposomal chemotherapy: effect of chemotherapeutic agent, nanoparticle size, and circulation time. J Vasc Interv Radiol: JVIR. 2005;16(10):1365–71.

    Article  PubMed  Google Scholar 

  8. Gabizon A, Shmeeda H, Barenholz Y. Pharmacokinetics of pegylated liposomal Doxorubicin: review of animal and human studies. Clin Pharmacokinet. 2003;42(5):419–36.

    Article  CAS  PubMed  Google Scholar 

  9. Farokhzad OC, Langer R. Impact of nanotechnology on drug delivery. ACS Nano. 2009;3(1):16–20.

    Article  CAS  PubMed  Google Scholar 

  10. van der Meel R, Vehmeijer LJ, Kok RJ, Storm G, van Gaal EV. Ligand-targeted particulate nanomedicines undergoing clinical evaluation: current status. Adv Drug Deliv Rev. 2013;65(10):1284–98.

    Article  PubMed  Google Scholar 

  11. Magnani M, Rossi L, Chiarantini L, Fraternale A, Casabianca A. Red blood cells as carriers of drugs against retroviruses. In: Gregoriadis G, McCormack B, Poste G, editors. Targeting of drugs 4. US: Springer; 1994. p. 147–52.

    Chapter  Google Scholar 

  12. Samokhin GP, Smirnov MD, Muzykantov VR, Domogatsky SP, Smirnov VN. Red blood cell targeting to collagen-coated surfaces. FEBS Lett. 1983;154(2):257–61.

    Article  CAS  PubMed  Google Scholar 

  13. Pope C, Uchea C, Flynn N, Poindexter K, Geng L, Brimijoin WS, et al. In vitro characterization of cationic copolymer-complexed recombinant human butyrylcholinesterase. Biochem Pharmacol. 2015;98(3):531–9.

  14. Hall SS, Mitragotri S, Daugherty PS. Identification of peptide ligands facilitating nanoparticle attachment to erythrocytes. Biotechnol Prog. 2007;23(3):749–54.

    Article  CAS  PubMed  Google Scholar 

  15. Anselmo AC, Gupta V, Zern BJ, Pan D, Zakrewsky M, Muzykantov V, et al. Delivering nanoparticles to lungs while avoiding liver and spleen through adsorption on red blood cells. ACS Nano. 2013;7(12):11129–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Muzykantov VR. Drug delivery by red blood cells: vascular carriers designed by mother nature. Expert Opin Drug Deliv. 2010;7(4):403–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shi G, Mukthavaram R, Kesari S, Simberg D. Distearoyl anchor-painted erythrocytes with prolonged ligand retention and circulation properties in vivo. Adv Healthcare Mater. 2014;3(1):142–8.

    Article  CAS  Google Scholar 

  18. Peeters PA, Oussoren C, Eling WM, Crommelin DJ. Immunospecific targeting of immunoliposomes, F(ab’)2 and IgG to red blood cells in vivo. Biochim Biophys Acta. 1988;943(2):137–47.

    Article  CAS  PubMed  Google Scholar 

  19. de Isla NG, Riquelme BD, Rasia RJ, Valverde JR, Stoltz JF. Quantification of glycophorin A and glycophorin B on normal human RBCs by flow cytometry. Transfusion. 2003;43(8):1145–52.

    Article  PubMed  Google Scholar 

  20. Lloyd-Evans P, Guest AR, Austin EB, Scott ML. Use of a phycoerythrin-conjugated anti-glycophorin A monoclonal antibody as a double label to improve the accuracy of FMH quantification by flow cytometry. Transfus Med. 1999;9(2):155–60.

    Article  CAS  PubMed  Google Scholar 

  21. Spitzer D, Unsinger J, Bessler M, Atkinson JP. ScFv-mediated in vivo targeting of DAF to erythrocytes inhibits lysis by complement. Mol Immunol. 2004;40(13):911–9.

    Article  CAS  PubMed  Google Scholar 

  22. Zaitsev S, Spitzer D, Murciano JC, Ding BS, Tliba S, Kowalska MA, et al. Sustained thromboprophylaxis mediated by an RBC-targeted pro-urokinase zymogen activated at the site of clot formation. Blood. 2010;115(25):5241–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kontos S, Kourtis IC, Dane KY, Hubbell JA. Engineering antigens for in situ erythrocyte binding induces T-cell deletion. Proc Natl Acad Sci U S A. 2013;110(1):E60–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Choi YH, Liu F, Kim J-S, Choi YK, Park JS, Kim SW. Polyethylene glycol-grafted poly-L-lysine as polymeric gene carrier. J Control Release. 1998;54(1):39–48.

    Article  PubMed  Google Scholar 

  25. Manickam DS, Brynskikh AM, Kopanic JL, Sorgen PL, Klyachko NL, Batrakova EV, et al. Well-defined cross-linked antioxidant nanozymes for treatment of ischemic brain injury. J Control Release. 2012;162(3):636–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82(1):70–7.

    Article  CAS  PubMed  Google Scholar 

  27. Paulose CS, Dakshinamurti K. Chronic catheterization using vascular-access-port in rats: blood sampling with minimal stress for plasma catecholamine determination. J Neurosci Methods. 1987;22(2):141–6.

    Article  CAS  PubMed  Google Scholar 

  28. Yoburn BC, Morales R, Inturrisi CE. Chronic vascular catheterization in the rat: comparison of three techniques. Physiol Behav. 1984;33(1):89–94.

    Article  CAS  PubMed  Google Scholar 

  29. Korshunov VA, Berk BC. Flow-induced vascular remodeling in the mouse: a model for carotid intima-media thickening. Arterioscler Thromb Vasc Biol. 2003;23(12):2185–91.

    Article  CAS  PubMed  Google Scholar 

  30. Quan A, Ward ME, Kulandavelu S, Adamson SL, Langille BL. Endothelium-independent flow-induced dilation in the mouse carotid artery. J Vasc Res. 2006;43(4):383–91.

    Article  CAS  PubMed  Google Scholar 

  31. Metere A, Iorio E, Scorza G, Camerini S, Casella M, Crescenzi M, et al. Carbon monoxide signaling in human red blood cells: evidence for pentose phosphate pathway activation and protein deglutathionylation. Antioxid Redox Signal. 2014;20(3):403–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Abdelhalim MA. The effects of size and period of administration of gold nanoparticles on rheological parameters of blood plasma of rats over a wide range of shear rates: in vivo. Lipids Health Dis. 2011;10:191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schmid-Schonbein H, Weiss J, Ludwig H. A simple method for measuring red cell deformability in models of the microcirculation. Blut. 1973;26(6):369–79.

    Article  CAS  PubMed  Google Scholar 

  34. Zhao Y, Sun X, Zhang G, Trewyn BG, Slowing II, Lin VS. Interaction of mesoporous silica nanoparticles with human red blood cell membranes: size and surface effects. ACS Nano. 2011;5(2):1366–75.

    Article  CAS  PubMed  Google Scholar 

  35. Goldsmith HL, Turitto VT. Rheological aspects of thrombosis and haemostasis: basic principles and applications. ICTH-Report-Subcommittee on Rheology of the International Committee on Thrombosis and Haemostasis. Thromb Haemost. 1986;55(3):415–35.

    CAS  PubMed  Google Scholar 

  36. Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. JAMA. 1999;282(21):2035–42.

    Article  CAS  PubMed  Google Scholar 

  37. Pang Z, Hu CM, Fang RH, Luk BT, Gao W, Wang F, et al. Detoxification of organophosphate poisoning using nanoparticle bioscavengers. ACS Nano. 2015;9(6):6450–8.

  38. Peura L, Huttunen KM. Sustained release of metformin via red blood cell accumulated sulfenamide prodrug. J Pharm Sci. 2014;103(7):2207–10.

    Article  CAS  PubMed  Google Scholar 

  39. Kano A, Taniwaki Y, Nakamura I, Shimada N, Moriyama K, Maruyama A. Tumor delivery of Photofrin(R) by PLL-g-PEG for photodynamic therapy. J Control Release. 2013;167(3):315–21.

    Article  CAS  PubMed  Google Scholar 

  40. Dai J, Zou S, Pei Y, Cheng D, Ai H, Shuai X. Polyethylenimine-grafted copolymer of poly(l-lysine) and poly(ethylene glycol) for gene delivery. Biomaterials. 2011;32(6):1694–705.

    Article  CAS  PubMed  Google Scholar 

  41. Flynn N, Topal C, Koralege RSH, Hartson S, Ranjan A, Liu J, et al. Encapsulation of bovine serum albumin with a library of PEGylated cationic copolymers. Int J Pharm. 2015(Under review).

  42. Greaby R, Zderic V, Vaezy S. Pulsatile flow phantom for ultrasound image-guided HIFU treatment of vascular injuries. Ultrasound Med Biol. 2007;33(8):1269–76.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Shrivastava R, Kushwaha P, Bhutia YC, Flora S. Oxidative stress induced following exposure to silver and gold nanoparticles in mice. Toxicol Ind Health. 2014. doi:10.1177/0748233714562623.

  44. Nemmar A, Beegam S, Yuvaraju P, Yasin J, Shahin A, Ali BH. Interaction of amorphous silica nanoparticles with erythrocytes in vitro: role of oxidative stress. Cell Physiol Biochem: Int J Exp Cell Physiol Biochem Pharmacol. 2014;34(2):255–65.

    Article  CAS  Google Scholar 

  45. Raveendran R, Bhuvaneshwar G, Sharma CP. In vitro cytotoxicity and cellular uptake of curcumin-loaded Pluronic/Polycaprolactone micelles in colorectal adenocarcinoma cells. J Biomater Appl. 2013;27(7):811–27.

    Article  PubMed  Google Scholar 

  46. Dai L, Wang L, Deng L, Liu J, Lei J, Li D, et al. Novel multiarm polyethylene glycol-dihydroartemisinin conjugates enhancing therapeutic efficacy in non-small-cell lung cancer. Sci Rep. 2014;4:5871.

    CAS  PubMed  Google Scholar 

  47. Freese C, Schreiner D, Anspach L, Bantz C, Maskos M, Unger RE, et al. In vitro investigation of silica nanoparticle uptake into human endothelial cells under physiological cyclic stretch. Part Fibre Toxicol. 2014;11(1):68.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Baskurt OK, Meiselman HJ. Blood rheology and hemodynamics. Semin Thromb Hemost. 2003;29(5):435–50.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

We thank Marie Montelongo and the Oklahoma Center for Respiratory and Infectious Diseases Center (GM103648) for providing core-facility support and technical expertise. The content is solely the responsibility of the authors and does not necessarily represent the official views of the DTRA or ITP. A.R., J.L, C.P, J.R, and S.H. have patent interests in NP-mediated erythrocyte technology according to Oklahoma State University policies. K.S., N.F., R.H, P.C, and S.K. declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Ranjan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, K., Koralege, R.S.H., Flynn, N. et al. Nanoparticle Attachment to Erythrocyte Via the Glycophorin A Targeted ERY1 Ligand Enhances Binding without Impacting Cellular Function. Pharm Res 33, 1191–1203 (2016). https://doi.org/10.1007/s11095-016-1864-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-1864-x

Key Words

Navigation