Skip to main content
Log in

Prolonged Release of Bioactive Model Proteins from Anionic Microgels Fabricated with a New Microemulsion Approach

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Therapeutic proteins have become an integral part of health care. However, their controlled delivery remains a challenge. Protein function depends on a delicate three dimensional structure, which can be damaged during the fabrication of controlled release systems. This study presents a microgel-based controlled release system capable of high loading efficiencies, prolonged release and retention of protein function.

Methods

A new DMSO/Pluronic microemulsion served as a reaction template for the crosslinking of poly(acrylic acid) and oligo (ethylene glycol) to form microgels. Poly(acylic acid) molecular weights and microgel crosslinking densities were altered to make a series of microgels. Microgel capacity to capture and retain proteins of different sizes and isoelectric points, to control their release rate (over ~30 days) and to maintain the biofunctionality of the released proteins were evaluated.

Results

Microgels of different sizes and morphologies were synthesized. Loading efficiencies of 100% were achieved with lysozyme in all formulations. The loading efficiency of all other proteins was formulation dependent. Release of lysozyme was achieved for up to 30 days and the released lysozyme retained over 90% of its activity.

Conclusions

High loading efficiencies and prolonged release of different proteins was achieved. Furthermore, lysozyme’s functionality remained uncompromised after encapsulation and release. This work begins to lay the foundation for a broad platform for the delivery of therapeutic proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

AA:

Acrylic acid

A-CPA:

4,4’-azobis(4-cyanopentanoic acid)

CPA-DB:

4-cyanopentanoic acid dithiobenzoate

DMTMM:

4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride

GPC:

Gel permeation chromatography

NMM:

4-methylmorpholine

OEG:

Oligo(ethylene glycol)

pAA:

Poly(acrylic acid)

PBS:

Phosphate buffered saline

pI:

Isoelectric point

RAFT:

Reversible addition-fragmentation chain transfer

SEM:

Scanning electron microscopy

References

  1. Carter PJ. Introduction to current and future protein therapeutics: a protein engineering perspective. Exp Cell Res. 2011;317(9):1261–9.

    Article  CAS  PubMed  Google Scholar 

  2. Vermonden T, Censi R, Hennink WE. Hydrogels for protein delivery. Chem Rev. 2012;112(5):2853–88.

    Article  CAS  PubMed  Google Scholar 

  3. Leader B, Baca QJ, Golan DE. Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov. 2008;7(1):21–39.

    Article  CAS  PubMed  Google Scholar 

  4. Ecker DM, Jones DJ, Levine HL. The therapeutic monoclonal antibody market. mAbs. 2015;7(1):9–14.

  5. Manning MC, Chou DK, Murphy BM, Payne RW, Katayama DS. Stability of protein pharmaceuticals: an update. Pharm Res. 2010;27(4):544–75.

    Article  PubMed  Google Scholar 

  6. Bysell H, Månsson R, Hansson P, Malmsten M. Microgels and microcapsules in peptide and protein drug delivery. Adv Drug Deliv Rev. 2013;63(13):1172–85.

    Article  Google Scholar 

  7. Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K. The development of microgels/nanogels for drug delivery applications. Prog Polym Sci. 2008;33(4):448–77.

    Article  CAS  Google Scholar 

  8. Vinogradov SV. Colloidal microgels in drug delivery applications. Curr Pharm Des. 2007;12(36):4703–12.

    Article  Google Scholar 

  9. Hennink WE, van Nostrum CF. Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev. 2012;64:223–36.

    Article  Google Scholar 

  10. Gupta P, Vermani K, Garg S. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today. 2002;7(10):569–79.

    Article  CAS  PubMed  Google Scholar 

  11. Yim ES, Zhao B, Myung D, Kourtis LC, Frank CW, Carter D, et al. Biocompatibility of poly(ethylene glycol)/poly(acrylic acid) interpenetrating polymer network hydrogel particles in RAW 264.7 macrophage and MG-63 osteoblast cell lines. J Biomed Mater Res A. 2009;91(3):894–902.

    Article  PubMed  Google Scholar 

  12. De Giglio E, Cafagna D, Ricci MA, Sabbatini L, Cometa S, Ferretti C, et al. Biocompatibility of poly(acrylic Acid) thin coatings electro-synthesized onto TiAlV-based implants. J Bioact Compat Polym. 2010;25(4):374–91.

    Article  Google Scholar 

  13. Fox M, Szoka F, Frechet J. Soluble polymer carriers for the treatment of cancer: the importance of molecular architecture. Acc Chem Res. 2009;42(8):1141–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pelet J, Putnam D. An in-depth analysis of polymer-analogous conjugation using DMTMM. Bioconjug Chem. 2011;22(3):329–37.

    Article  CAS  PubMed  Google Scholar 

  15. Kunishima M, Morita J, Kawachi C, Iwasaki F, Terao K, Tani S. Esterification of carboxylic acids with alcohols by 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methyl-morpholinium chloride (DMTMM). Tetrahedron. 1999;8:1255–6.

    Google Scholar 

  16. Weiser JR, Yueh A, Putnam D. Protein release from dihydroxyacetone-based poly(carbonate ester) matrices. Acta Biomater. 2013;9(9):8245–53.

    Article  CAS  PubMed  Google Scholar 

  17. Wampler FM. Formation of diacrylic acid during acrylic acid storage. Plant/Oper Prog. 1988;7(3):183–9.

    Article  CAS  Google Scholar 

  18. Pelet JM, Putnam D. Poly(acrylic acid) undergoes partial esterification during RAFT synthesis in methanol and interchain disulfide bridging upon NaOH treatment. Macromol Chem Phys. 2012;213:2536–40.

    Article  CAS  Google Scholar 

  19. Rejman J, Oberle V, Zuhorn IS, Hoekstra D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J. 2004;377:159–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Prokov A. Intracellular delivery: fundamentals and applications. Prokop A, editor. New York: Springer; 2011.

    Book  Google Scholar 

  21. Sharma G, Valenta DT, Altman Y, Harvey S, Xie H, Mitragotri S, et al. Polymer particle shape independently influences binding and internalization by macrophages. J Control Release. 2010;147(3):408–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Champion JA, Walker A, Mitragotri S. Role of particle size in phagocytosis of polymeric microspheres. Pharm Res. 2009;25(8):1815–21.

    Article  Google Scholar 

  23. Schillemans JP, Verheyen E, Barendregt A, Hennink WE, Van Nostrum CF. Anionic and cationic dextran hydrogels for post-loading and release of proteins. J Control Release. 2011;150(3):266–71.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Y, Zhu W, Wang B, Ding J. A novel microgel and associated post-fabrication encapsulation technique of proteins. J Control Release. 2005;105(3):260–8.

    Article  CAS  PubMed  Google Scholar 

  25. Gehrke SH, Uhden LH, McBride JF. Enhanced loading and activity retention of bioactive proteins in hydrogel delivery systems. J Control Release. 1998;55(1):21–33.

    Article  CAS  PubMed  Google Scholar 

  26. Wittemann A, Azzam T, Eisenberg A. Biocompatible polymer vesicles from biamphiphilic triblock copolymers and their interaction with bovine serum albumin. Langmuir. 2007;23(4):2224–30.

    Article  CAS  PubMed  Google Scholar 

  27. Hollmann O, Czeslik C. Characterization of a planar poly(acrylic acid) brush as a materials coating for controlled protein immobilization. Langmuir. 2006;22(7):3300–5.

    Article  CAS  PubMed  Google Scholar 

  28. Cooper CL, Dubin PL, Kayitmazer AB, Turksen S. Polyelectrolyte–protein complexes. Curr Opin Colloid Interface Sci. 2005;10(1–2):52–78.

    Article  CAS  Google Scholar 

  29. Czeslik C, Jackler G, Steitz R, von Grünberg H-H. Protein binding to like-charged polyelectrolyte brushes by counterion evaporation. J Phys Chem B. 2004;108(35):13395–402.

    Article  CAS  Google Scholar 

  30. Henzler K, Haupt B, Lauterbach K, Wittemann A, Borisov O, Ballauff M. Adsorption of beta-lactoglobulin on spherical polyelectrolyte brushes: direct proof of counterion release by isothermal titration calorimetry. J Am Chem Soc. 2010;132(9):3159–63.

    Article  CAS  PubMed  Google Scholar 

  31. Wittemann A, Haupt B, Ballauff M. Adsorption of proteins on spherical polyelectrolyte brushes in aqueous solution. Phys Chem Chem Phys. 2003;5(8):1671–7.

    Article  CAS  Google Scholar 

  32. Meier-Koll AA, Fleck CC, Von Grünberg HH. The counterion-release interaction. J Phys Condens Matter. 2004;16(34):6041–52.

    Article  CAS  Google Scholar 

  33. Koutsopoulos S, Unsworth LD, Nagai Y, Zhang S. Controlled release of functional proteins through designer self-assembling peptide nanofiber hydrogel scaffold. Proc Natl Acad Sci. 2009;106(12):4623–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hennink WE, De Jong SJ, Bos GW, Veldhuis TFJ, van Nostrum CF. Biodegradable dextran hydrogels crosslinked by stereocomplex formation for the controlled release of pharmaceutical proteins. Int J Pharm. 2004;277(1–2):99–104.

    Article  CAS  PubMed  Google Scholar 

  35. Hoare TR, Kohane DS. Hydrogels in drug delivery: progress and challenges. Polymer. 2008;49(8):1993–2007.

    Article  CAS  Google Scholar 

  36. Sternberg M, Hershberger D. Separation of protein with polyacrylic acids. Biochim Biophys Acta. 1974;342(1):195–206.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang C, Lillie R, Cotter J, Vaughan D. Lysozyme purification from tobacco extract by polyelectrolyte precipitation. J Chromatogr A. 2005;1069(1):107–12.

    Article  CAS  PubMed  Google Scholar 

  38. Cruise GM, Scharp DS, Hubbell JA. Characterization of permeability and network structure of interfacially photopolymerized poly (ethylene glycol) diacrylate hydrogels. Biomaterials. 1998;19:1287–94.

    Article  CAS  PubMed  Google Scholar 

  39. Thilakarathne VK, Briand VA, Kasi RM, Kumar CV. Tuning Hemoglobin—poly(acrylic acid) interactions by controlled chemical modification with triethylenetetramine. J Phys Chem B. 2012;116(42):12783–92.

    Article  CAS  PubMed  Google Scholar 

  40. Thilakarathne V, Briand VA, Zhou Y, Kasi RM, Kumar CV. Protein polymer conjugates: improving the stability of hemoglobin with poly(acrylic acid). Langmuir. 2011;27(12):7663–71.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

We would like to gratefully acknowledge the Coleman Foundation and the NSF Graduate Research Fellowship for their support (J.L.R.). The authors would like to acknowledge Dr. Lindsey Crawford for her assistance with cell culture and MTT assay. This work made use of Cornell Center for Materials Research facilities funded through NSF MRSEC DMR-1120296 and the Cornell University NMR Chemistry facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Putnam.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 71 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rios, J.L., Lu, G., Seo, N.E. et al. Prolonged Release of Bioactive Model Proteins from Anionic Microgels Fabricated with a New Microemulsion Approach. Pharm Res 33, 879–892 (2016). https://doi.org/10.1007/s11095-015-1834-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1834-8

KEY WORDS

Navigation