Skip to main content

Advertisement

Log in

Sustained Pulmonary Delivery of a Water-Soluble Antibiotic Without Encapsulating Carriers

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Traditional polymeric nanoparticle formulations for prolonged local action during inhalation therapy are highly susceptible to muco-ciliary clearance. In addition, polymeric carriers are typically administered in high doses due to finite drug loading. For toxicological reasons, these carriers and their degradation byproducts are undesirable for inhalation therapy, particularly for chronic use, due to potential lung accumulation.

Methods

We synthesized a novel, insoluble prodrug (MRPD) of a time-dependent β-lactam, meropenem, and formulated MRPD into mucus-penetrating crystals (MRPD-MPCs). After characterizing their mucus mobility (in vitro) and stability, we evaluated the lung pharmacokinetics of intratracheally-instilled MRPD-MPCs and a meropenem solution in guinea pigs.

Results

Meropenem levels rapidly declined in the lungs of guinea pigs receiving meropenem solution compared to those given MRPD-MPCs. At 9 h after dosing, drug levels in the lungs of animals that received meropenem solution dropped to 12 ng/mL, whereas those that received MRPD-MPCs maintained an average drug level of ≥1,065 ng/mL over a 12-h period.

Conclusions

This work demonstrated that the combination of prodrug chemistry and mucus-penetrating platform created nanoparticles that produced sustained levels of meropenem in guinea pig lungs. This strategy represents a novel approach for sustained local drug delivery to the lung without using encapsulating matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CF:

Cystic fibrosis

C max :

Peak concentration

CVM:

Cervicovaginal mucus

HLMs:

Human lung microsomes

HPLC:

High-performance liquid chromatography

LML:

Luminal mucus layer

MIC:

Minimum inhibitory concentration

MPC:

Mucus-penetrating crystal

mPEG:

Methoxy poly(ethylene) glycol

MPP:

Mucus-penetrating particle

MRPD :

Meropenem prodrug

MRPD-MPC :

MRPD formulated as a mucus-penetrating crystal

n:

Particle population

PCL:

Periciliary layer

PDI:

Polydispersity index

PK:

Pharmacokinetics

PS:

Polystyrene

S :

Solubility

Vmean :

Mean ensemble velocity

References

  1. Loira-Pastoriza C, Todoroff J, Vanbever R. Delivery strategies for sustained drug release in the lungs. Adv Drug Deliv Rev. 2014;75:81–91.

    Article  CAS  PubMed  Google Scholar 

  2. Olsson B, Bondesson E, Borgström L, Edsbäcker S, Eirefelt S, Ekelund K, et al. Pulmonary drug metabolism, clearance, and absorption. In: Smyth HDC, Hickey AJ, editors. Controlled pulmonary drug delivery. New York: Springer; 2011. p. 21–50.

    Chapter  Google Scholar 

  3. Jones RM, Neef N. Interpretation and prediction of inhaled drug particle accumulation in the lung and its associated toxicity. Xenobiotica. 2012;42(1):86–93.

    Article  CAS  PubMed  Google Scholar 

  4. Wolff RK, Griffith WC, Jr., Cuddihy RG, Snipes MB, Henderson RF, Mauderly JL, et al. Modeling accumulations of particles in lung during chronic inhalation exposures that lead to impaired clearance. Health Phys. 1989;57 Suppl 1 (Copyright (C) 2015 U.S. National Library of Medicine.):61–7; discussion 7–8.

  5. Gehr P, Blank F, Rothen-Rutishauser BM. Fate of inhaled particles after interaction with the lung surface. Paediatr Respir Rev. 2006;7 Suppl 1:S73–5.

    Article  PubMed  Google Scholar 

  6. Schmid O, Moller W, Semmler-Behnke M, Ferron GA, Karg E, Lipka J, et al. Dosimetry and toxicology of inhaled ultrafine particles. Biomarkers. 2009;14 Suppl 1:67–73.

    Article  CAS  PubMed  Google Scholar 

  7. Ibrahim M, Garcia-Contreras L. Mechanisms of absorption and elimination of drugs administered by inhalation. Ther Deliv. 2013;4(8):1027–45.

    Article  CAS  PubMed  Google Scholar 

  8. Lai SK, Wang YY, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev. 2009;61(2):158–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Nance EA, Woodworth GF, Sailor KA, Shih T-Y, Xu Q, Swaminathan G, et al. A dense poly(ethylene glycol) coating improves penetration of large polymeric nanoparticles within brain tissue. Sci Transl Med. 2012;4:149ra119.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Suk JS, Kim AJ, Trehan K, Schneider CS, Cebotaru L, Woodward OM, et al. Lung gene therapy with highly compacted DNA nanoparticles that overcome the mucus barrier. J Control Release. 2014;178:8–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Yang M, Yu T, Wang YY, Lai SK, Zeng Q, Miao B, et al. Vaginal Delivery of paclitaxel via nanoparticles with non-mucoadhesive surfaces suppresses cervical tumor growth. Adv Healthc Mater. 2013.

  12. Schopf LR, Popov AM, Enlow EM, Bourassa JL, Ong WZ, Nowak P, et al. Topical ocular drug delivery to the back of the eye by mucus-penetrating particles. Transl Vis Sci Technol. 2015;4(3):11.

    PubMed Central  PubMed  Google Scholar 

  13. Schopf L, Enlow E, Popov A, Bourassa J, Chen H. Ocular pharmacokinetics of a novel loteprednol etabonate 0.4% ophthalmic formulation. Ophthalmol Ther. 2014;3(1–2):63–72.

    Article  PubMed Central  Google Scholar 

  14. Baudy RB, Butera JA, Abou-Gharbia MA, Chen H, Harrison B, Jain U, et al. Prodrugs of perzinfotel with improved oral bioavailability. J Med Chem. 2009;52(3):771–8.

    Article  CAS  PubMed  Google Scholar 

  15. Maury J, Feray L, Perfetti P, Bertrand MP. A flexible, stereoselective dimethylzinc-mediated radical-anionic cascade: dramatic influence of additional Lewis acids. Org Lett. 2010;12(16):3590–3.

    Article  CAS  PubMed  Google Scholar 

  16. Popov A, Enlow EM, Bourassa J, Gardner CR, Chen H, Ensign LM, et al. Nanocrystals, compositions, and methods that aid particle transport in mucus. US Patent Application Publication. 2013; US20130323179.

  17. Wang YY, Lai SK, Suk JS, Pace A, Cone R, Hanes J. Addressing the PEG mucoadhesivity paradox to engineer nanoparticles that “slip” through the human mucus barrier. Angew Chem Int Ed Engl. 2008;47(50):9726–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Viaene E, Chanteux H, Servais H, Mingeot-Leclercq MP, Tulkens PM. Comparative stability studies of antipseudomonal beta-lactams for potential administration through portable elastomeric pumps (home therapy for cystic fibrosis patients) and motor-operated syringes (intensive care units). Antimicrob Agents Chemother. 2002;46(8):2327–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Lai SK, O’Hanlon DE, Harrold S, Man ST, Wang YY, Cone R, et al. Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc Natl Acad Sci U S A. 2007;104(5):1482–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Tang BC, Dawson M, Lai SK, Wang YY, Suk JS, Yang M, et al. Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier. Proc Natl Acad Sci U S A. 2009;106(46):19268–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Boer F. Drug handling by the lungs. Br J Anaesth. 2003;91(1):50–60.

    Article  CAS  PubMed  Google Scholar 

  22. Fukasawa M, Sumita Y, Harabe ET, Tanio T, Nouda H, Kohzuki T, et al. Stability of meropenem and effect of 1 beta-methyl substitution on its stability in the presence of renal dehydropeptidase I. Antimicrob Agents Chemother. 1992;36(7):1577–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Hirota T, Nishikawa Y, Tanaka M, Igarashi T, Kitagawa H. Characterization of dehydropeptidase I in the rat lung. Eur J Biochem. 1986;160(3):521–5.

    Article  CAS  PubMed  Google Scholar 

  24. Cayston prescribing information. Available from: http://www.cayston.com/prescribing_info.html as of August, 2014.

  25. Patel PR, Cook SE. Stability of meropenem in intravenous solutions. Am J Health Syst Pharm. 1997;54(4):412–21.

    CAS  PubMed  Google Scholar 

  26. Teitelbaum AM, Meissner A, Harding RA, Wong CA, Aldrich CC, Remmel RP. Synthesis, pH-dependent, and plasma stability of meropenem prodrugs for potential use against drug-resistant tuberculosis. Bioorg Med Chem. 2013;21(17):5605–17.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Langer R. Polymer-controlled drug delivery systems. Acc Chem Res. 1993;26(10):537–42.

    Article  CAS  Google Scholar 

  28. Cystic Fibrosis Foundation Patient Registry 2008 Annual Data Report. Bethesda: Cystic Fibrosis Foundation 2009.

  29. Dales L, Ferris W, Vandemheen K, Aaron SD. Combination antibiotic susceptibility of biofilm-grown Burkholderia cepacia and Pseudomonas aeruginosa isolated from patients with pulmonary exacerbations of cystic fibrosis. Eur J Clin Microbiol Infect Dis. 2009;28(10):1275–9.

    Article  CAS  PubMed  Google Scholar 

  30. Maiz L, Giron RM, Olveira C, Quintana E, Lamas A, Pastor D, et al. Inhaled antibiotics for the treatment of chronic bronchopulmonary Pseudomonas aeruginosa infection in cystic fibrosis: systematic review of randomised controlled trials. Expert Opin Pharmacother. 2013;14(9):1135–49.

    Article  CAS  PubMed  Google Scholar 

  31. Turnidge JD. The pharmacodynamics of beta-lactams. Clin Infect Dis. 1998;27(1):10–22.

    Article  CAS  PubMed  Google Scholar 

  32. Oermann CM, Retsch-Bogart GZ, Quittner AL, Gibson RL, McCoy KS, Montgomery AB, et al. An 18-month study of the safety and efficacy of repeated courses of inhaled aztreonam lysine in cystic fibrosis. Pediatr Pulmonol. 2010;45(11):1121–34.

    Article  PubMed  Google Scholar 

  33. Sahm D. In vitro activity of doripenem. Clin Infect Dis. 2009;49 Suppl 1:S11–6.

    Article  CAS  PubMed  Google Scholar 

  34. Gibson RL, Retsch-Bogart GZ, Oermann C, Milla C, Pilewski J, Daines C, et al. Microbiology, safety, and pharmacokinetics of aztreonam lysinate for inhalation in patients with cystic fibrosis. Pediatr Pulmonol. 2006;41(7):656–65.

    Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The work described was partially supported by Award Number R43HL106899 from the National Heart, Lung and Blood Institute. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Heart, Lung and Blood Institute or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Winston Ong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 43 kb)

ESM 2

(DOCX 50 kb)

ESM 3

(DOCX 67 kb)

ESM 4

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ong, W., Nowak, P., Cu, Y. et al. Sustained Pulmonary Delivery of a Water-Soluble Antibiotic Without Encapsulating Carriers. Pharm Res 33, 563–572 (2016). https://doi.org/10.1007/s11095-015-1808-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1808-x

KEY WORDS

Navigation