Skip to main content
Log in

A Uniform Ultra-Small Microsphere/SAIB Hybrid Depot with Low Burst Release for Long-Term Continuous Drug Release

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

In the present study, a uniform ultra-small microsphere/sucrose acetate isobutyrate (SAIB) hybrid depot (m-SAIB depot) was designed to provide a long-term sustained release drug delivery system which not only reduced the burst release of an SAIB depot, but also eliminated the lag-time of PLGA microspheres.

Methods

Risperidone loaded m-SAIB depot (Ris-m-SAIB depot) was characterized by in vitro drug release, pharmacokinetics, in vivo degradation and biocompatibility, in comparison with risperidone loaded SAIB depot (Ris-SAIB depot).

Results

Ris-m-SAIB depot showed a low burst release (0.64%) and a reduced in vitro drug release rate due to the encapsulation of most drug in microspheres. After intramuscular administration, the in vivo burst release of Ris-m-SAIB was significantly decreased, as reflected by the low Cmax/Cs(4-td) (approximately 30-fold reduction), in comparison with Ris-SAIB depot. From 4 to 78 days, Ris-m-SAIB depot showed a higher plasma drug level (1.55 ~ 16.30 ng/ml) with a steadier drug release profile compared with Ris-SAIB depot. Ris-m-SAIB depot degraded gradually with a degradation t1/2 of 54.6 days and exhibited good biocompatibility in vivo.

Conclusion

These results demonstrate the potential application of a uniform ultra-small microsphere/SAIB hybrid depot for continuously delivering small drug molecules for long periods of time without burst release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

9-OH-Ris:

9-Hydroxyrisperidone

AUC:

Area under the curve

BA:

Benzyl alcohol

Cmax :

Maximum concentration

Cmin :

Minimum concentration

Cs :

Mean value of plasma concentration at steady-state

DAS:

Drug and statistics software

DCM:

Dichloromethane

EtOH:

Ethanol

HPLC:

High performance liquid chromatography

Mg(OH)2 :

Magnesium hydroxide

PBS:

Phosphate buffered saline

PLA:

Poly-lactide

PLGA:

Poly (lactide-coglycolide)

PVA:

Poly (vinyl alcohol)

Ris:

Risperidone

Ris-m-SAIB depot:

Risperidone loaded microsphere/SAIB hybrid depot

Ris-SAIB depot:

Risperidone loaded SAIB depot

SAIB:

Sucrose acetate isobutyrate

SEM:

Scanning electron microscopy

SPG:

membrane Shirasu porous glass membrane

t1/2 :

Half-life

UPLC–MS/MS:

Ultra performance liquid chromatography-tandem mass spectrometry

References

  1. Uhrich KE, Cannizzaro SM, Langer RS, Shakesheff KM. Polymeric systems for controlled drug release. Chem Rev. 1999;99(11):3181–98.

    Article  CAS  PubMed  Google Scholar 

  2. Heres S, Lambert M, Vauth R. Treatment of early episode in patients with schizophrenia: the role of long acting antipsychotics. Eur Psychiatry. 2014;29 Suppl 2(14):1409–13.

    Article  CAS  PubMed  Google Scholar 

  3. Hoybye C, Christiansen JS. Growth hormone replacement in adults—current standards and new perspectives. Best Pract Res Clin Endocrinol Metab. 2015;29(1):115–23.

    Article  PubMed  Google Scholar 

  4. Jiang Y, Wang F, Xu H, Liu H, Meng Q, Liu W. Development of andrographolide loaded PLGA microspheres: optimization, characterization and in vitro-in vivo correlation. Int J Pharm. 2014;475(1–2):475–84.

    Article  CAS  PubMed  Google Scholar 

  5. Doan TV, Couet W, Olivier JC. Formulation and in vitro characterization of inhalable rifampicin-loaded PLGA microspheres for sustained lung delivery. Int J Pharm. 2011;414(1–2):112–7.

    Article  CAS  PubMed  Google Scholar 

  6. Hu Z, Liu Y, Yuan W, Wu F, Su J, Jin T. Effect of bases with different solubility on the release behavior of risperidone loaded PLGA microspheres. Colloids Surf B: Biointerfaces. 2011;86(1):206–11.

    Article  CAS  PubMed  Google Scholar 

  7. Shive MS, Anderson JM. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev. 1997;28(1):5–24.

    Article  PubMed  Google Scholar 

  8. Schwendeman SP, Shah RB, Bailey BA, Schwendeman AS. Injectable controlled release depots for large molecules. J Control Release. 2014;190:240–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Wischke C, Schwendeman SP. Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. Int J Pharm. 2008;364(2):298–327.

    Article  CAS  PubMed  Google Scholar 

  10. Wang J, Wang BA, Schwendeman SP. Characterization of the initial burst release of a model peptide from poly(D, L-lactide-co-glycolide) microspheres. J Control Release. 2002;82(2–3):289–307.

    Article  CAS  PubMed  Google Scholar 

  11. Yang J, Wilson M, Celniker A. Recombinant human growth hormone poly(lactic-co-glycolic acid) (PLGA) microspheres provide a long lasting effect. J Control Release. 1997;49(97):193–205(13).

    Google Scholar 

  12. Ereshefsky L, Mannaert E. Pharmacokinetic profile and clinical efficacy of long-acting risperidone: potential benefits of combining an atypical antipsychotic and a new delivery system. Drugs R&D. 2005;6(3):129–37.

    Article  CAS  Google Scholar 

  13. Eerdekens M, Van Hove I, Remmerie B, Mannaert E. Pharmacokinetics and tolerability of long-acting risperidone in schizophrenia. Schizophr Res. 2004;70(1):91–100.

    Article  PubMed  Google Scholar 

  14. Sun F, Sui C, Teng L, Liu X, Teng L, Meng Q, et al. Studies on the preparation, characterization and pharmacological evaluation of tolterodine PLGA microspheres. Int J Pharm. 2010;397(1–2):44–9.

    Article  CAS  PubMed  Google Scholar 

  15. Luan X, Bodmeier R. Modification of the tri-phasic drug release pattern of leuprolide acetate-loaded poly(lactide-co-glycolide) microparticles. Eur J Pharm Biopharm. 2006;63(2):205–14.

    Article  CAS  PubMed  Google Scholar 

  16. Su Z, Sun F, Shi Y, Jiang C, Meng Q, Teng L, et al. Effects of formulation parameters on encapsulation efficiency and release behavior of risperidone poly(D, L-lactide-co-glycolide) microsphere. Chem Pharm Bull (Tokyo). 2009;57(11):1251–6.

    Article  CAS  Google Scholar 

  17. Husmann M, Schenderlein S, Luck M, Lindner H, Kleinebudde P. Polymer erosion in PLGA microparticles produced by phase separation method. Int J Pharm. 2002;242(1–2):277–80.

    Article  CAS  PubMed  Google Scholar 

  18. Berkland C, King M, Cox A, Kim K, Pack DW. Precise control of PLG microsphere size provides enhanced control of drug release rate. J Control Release. 2002;82(1):137–47.

    Article  CAS  PubMed  Google Scholar 

  19. Berkland C, Kim K, Pack DW. PLG microsphere size controls drug release rate through several competing factors. Pharm Res. 2003;20(7):1055–62.

    Article  CAS  PubMed  Google Scholar 

  20. Gao Z, Ding P, Zhang L, Shi J, Yuan S, Wei J, et al. Study of a pingyangmycin delivery system: Zein/Zein-SAIB in situ gels. Int J Pharm. 2007;328(1):57–64.

    Article  CAS  PubMed  Google Scholar 

  21. Kraeling RR, Barb CR, Rampacek GB, Thompson Jr DL, Gibson JW, Sullivan SA, et al. Luteinizing hormone response to controlled-release deslorelin in estradiol benzoate primed ovariectomized gilts. Theriogenology. 2000;53(9):1681–9.

    Article  CAS  PubMed  Google Scholar 

  22. Shi X, Lin X, Yao C, Shen L, Feng Y. Injectable long-acting in situ forming systems for Radix Ophiopogonis polysaccharide. Int J Biol Macromol. 2015;72:553–9.

    Article  CAS  PubMed  Google Scholar 

  23. Okumu FW, Dao LN, Fielder PJ, Dybdal N, Brooks D, Sane S, et al. Sustained delivery of human growth hormone from a novel gel system: SABER. Biomaterials. 2002;23(22):4353–8.

  24. Pechenov S, Shenoy B, Yang MX, Basu SK, Margolin AL. Injectable controlled release formulations incorporating protein crystals. J Control Release : Off J Control Release Soc. 2004;96(1):149–58.

    Article  CAS  Google Scholar 

  25. Lin X, Yang S, Gou J, Zhao M, Zhang Y, Qi N, et al. A novel risperidone-loaded SAIB-PLGA mixture matrix depot with a reduced burst release: effects of solvents and PLGA on drug release behaviors in vitro/in vivo. J Mater Sci Mater Med. 2012;23(2):443–55.

    Article  CAS  PubMed  Google Scholar 

  26. Lu Y, Tang X, Cui Y, Zhang Y, Qin F, Lu X. In vivo evaluation of risperidone-SAIB in situ system as a sustained release delivery system in rats. Eur J Pharm Biopharm. 2008;68(2):422–9.

    Article  CAS  PubMed  Google Scholar 

  27. Huang X, Brazel CS. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J Control Release. 2001;73(2–3):121–36.

    Article  CAS  PubMed  Google Scholar 

  28. Lu YX, Yu YL, Tang X. Sucrose acetate isobutyrate as an in situ forming system for sustained risperidone release. J Pharm Sci. 2007;96(12):3252–62.

    Article  CAS  PubMed  Google Scholar 

  29. Hogan M. DURECT Receives Complete Response Letter from FDA for POSIDUR™ (SABER®-Bupivacaine). 2014 February 12. Available from: http://phx.corporate-ir.net/phoenix.zhtml?c=121590&p=irol-newsArticle&ID=1899590.

  30. Qi F, Wu J, Yang T, Ma G, Su Z. Mechanistic studies for monodisperse exenatide-loaded PLGA microspheres prepared by different methods based on SPG membrane emulsification. Acta Biomater. 2014;10(10):4247–56.

    Article  CAS  PubMed  Google Scholar 

  31. Qi F, Wu J, Fan QZ, He F, Tian GF, Yang TY, et al. Preparation of uniform-sized exenatide-loaded PLGA microspheres as long-effective release system with high encapsulation efficiency and bio-stability. Colloids Surf B: Biointerfaces. 2013;112(3):492–8.

    Article  CAS  PubMed  Google Scholar 

  32. Piacentini E, Drioli E, Giorno L. Membrane emulsification technology: twenty-five years of inventions and research through patent survey. J Membr Sci. 2014;468(20):410–22.

    Article  CAS  Google Scholar 

  33. Thomas C, Gupta V, Ahsan F. Particle size influences the immune response produced by hepatitis B vaccine formulated in inhalable particles. Pharm Res. 2010;27(5):905–19.

    Article  CAS  PubMed  Google Scholar 

  34. Tran VT, Benoit JP, Venier-Julienne MC. Why and how to prepare biodegradable, monodispersed, polymeric microparticles in the field of pharmacy? Int J Pharm. 2011;407(1–2):1–11.

    Article  CAS  PubMed  Google Scholar 

  35. Procter BG, Chappel CI. Subchronic toxicity studies of sucrose acetate isobutyrate (SAIB) in the rat and dog. Food Chem Toxicol. 1998;36(2):101–10.

    Article  CAS  PubMed  Google Scholar 

  36. Reynolds RC. Metabolism and pharmacokinetics of sucrose acetate isobutyrate (SAIB) and sucrose octaisobutyrate (SOIB) in rats, dogs, monkeys or humans: a review. Food Chem Toxicol. 1998;36(2):95–9.

    Article  CAS  PubMed  Google Scholar 

  37. Reynolds RC, Chappel CI. Sucrose acetate isobutyrate (SAIB): historical aspects of its use in beverages and a review of toxicity studies prior to 1988. Food Chem Toxicol. 1998;36(2):81–93.

    Article  CAS  PubMed  Google Scholar 

  38. Phillips JC, Kingsnorth J, Rowland I, Gangolli SD, Lloyd AG. Studies on the metabolism of sucrose acetate isobutyrate in the rat and in man. Food Cosmet Toxicol. 1976;14(5):375–80.

    Article  CAS  PubMed  Google Scholar 

  39. Gogolewski S, Jovanovic M, Perren SM, Dillon JG, Hughes MK. Tissue response and in vivo degradation of selected polyhydroxyacids: polylactides (PLA), poly(3-hydroxybutyrate) (PHB), and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB/VA). J Biomed Mater Res. 1993;27(9):1135–48.

    Article  CAS  PubMed  Google Scholar 

  40. Huffman K, Casey D. Effect of carboxyl end groups on hydrolysis of polyglycolic acid. J Polym Sci Polym Chem Ed. 1985;23(7):1939–54.

    Article  CAS  Google Scholar 

  41. Kazazi-Hyseni F, Zandstra J, Popa ER, Goldschmeding R, Lathuile AA, Veldhuis GJ, et al. Biocompatibility of poly(d, l-lactic-co-hydroxymethyl glycolic acid) microspheres after subcutaneous and subcapsular renal injection. Int J Pharm. 2015;482(1–2):99–109.

    Article  CAS  PubMed  Google Scholar 

  42. Pajander J, Soikkeli AM, Korhonen O, Forbes RT, Ketolainen J. Drug release phenomena within a hydrophobic starch acetate matrix: FTIR mapping of tablets after in vitro dissolution testing. J Pharm Sci. 2008;97(8):3367–78.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

Dr. David B Jack is gratefully thanked for correcting English of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xia Lin or Ziyi Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, X., Xu, Y., Tang, X. et al. A Uniform Ultra-Small Microsphere/SAIB Hybrid Depot with Low Burst Release for Long-Term Continuous Drug Release. Pharm Res 32, 3708–3721 (2015). https://doi.org/10.1007/s11095-015-1731-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1731-1

KEY WORDS

Navigation