Skip to main content

Advertisement

Log in

Biomimicking Robust Hydrogel for the Mesenchymal Stem Cell Carrier

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

This study was aimed to develop a hydrogel-nanofiber as an advanced carrier for adipose derived human mesenchymal stem cells (AD-MSCs) and evaluate its potential for immunomodulatory therapies applicable to surface coating of drug eluting stent (DES) against coronary artery diseases (CAD).

Methods

A mixture of dispersing-nanofibers (dNFs) and poly (ethylene glycol)-diacrylate (PEGDA) were blended with sodium alginate to achieve robust mechanical strength. The effects of stem cell niche on cell viability and proliferation rates were evaluated using LDH assay and alamar blue assay, respectively. The amount of Nile-red microparticles (NR-MPs) remained in the hydrogel scaffolds was examined as an index for the physical strength of hydrogels. To evaluate the immunomodulatory activity of AD-MSCs as well as their influence by ROS, the level of L-Kynurenine was determined as tryptophan replacement compounds in parallel with IDO secreted from AD-MSCs using a colorimetric assay of L-amino acid.

Results

Both SA-cys-PEG and SA-cys-dNF-PEG upon being coated on stents using electrophoretic deposition technique displayed superior mechanical properties against the perfused flow. d-NFs had a significant impact on the stability of SA-cys-dNF-PEG, as evidenced by the substantial amount of NR-MPs remained in them. An enhanced subcellular level of ROS by spheroidal cluster yielded the high concentrations of L-Kynurenine (1.67 ± 0.6 μM without H2O2, 5.2 ± 1.14 μM with 50 μM of H2O2 and 8.8 ± 0.51 μM with 100 μM of H2O2), supporting the IDO-mediated tryptophan replacement process.

Conclusion

The “mud-and-straw” hydrogels are robust in mechanical property and can serve as an ideal niche for AD-MSCs with immunomodulatory effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

d-NFs:

Dispersing-nanofibers

EPD:

Electrophoretic deposition

IDO:

Indoleamine 2,3-dioxygenase

NR-MPs:

Nile-red microparticles

ROS:

Reactive oxygen species

SA-cys:

Hydrogel scaffolds made of Cysteine-conjugated sodium alginate

SA-cys-dNF:

Hydrogel scaffolds made of SA-cys blended with dNFs

SA-cys-dNF-PEG:

Hydrogel scaffolds made of SA-cys cross-linked with dNFs and PEG-DA

SA-cys-PEG:

Hydrogel scaffolds made of SA-cys cross-linked with PEG-DA

References

  1. Lusis AJ. Atherosclerosis. Nature. 2000;407:233–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Maisel WH. Unanswered questions–drug-eluting stents and the risk of late thrombosis. N Engl J Med. 2007;356:981–4.

    Article  CAS  PubMed  Google Scholar 

  3. Hulsmans M, Van Dooren E, Holvoet P. Mitochondrial reactive oxygen species and risk of atherosclerosis. Curr Atheroscler Rep. 2012;14:264–76.

    Article  CAS  PubMed  Google Scholar 

  4. Oh B, Lee CH. Nanofiber for cardiovascular tissue engineering. Expert Opin Drug Deliv. 2013;10:1565–82.

  5. Oh B, Lee CH. Nanofiber-coated drug eluting stent for the stabilization of mast cells. Pharm Res. 2014;31:2463–78.

  6. Kode JA, Mukherjee S, Joglekar MV, Hardikar AA. Mesenchymal stem cells: immunobiology and role in immunomodulation and tissue regeneration. Cytotherapy. 2009;11:377–91.

    Article  CAS  PubMed  Google Scholar 

  7. Nauta AJ, Fibbe WE. Immunomodulatory properties of mesenchymal stromal cells. Blood. 2007;110:3499–506.

  8. Nakajima H, Uchida K, Guerrero AR, Watanabe S, Sugita D, Takeura N, et al. Transplantation of mesenchymal stem cells promotes an alternative pathway of macrophage activation and functional recovery after spinal cord injury. J Neurotrauma. 2012;29:1614–25.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Jiang XX, Zhang Y, Liu B, Zhang SX, Wu Y, Yu XD, et al. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood. 2005;105:4120–6.

    Article  CAS  PubMed  Google Scholar 

  10. Zanotti L, Sarukhan A, Dander E, Castor M, Cibella J, Soldani C, et al. Encapsulated mesenchymal stem cells for in vivo immunomodulation. Leukemia. 2013;27:500–3.

    Article  CAS  PubMed  Google Scholar 

  11. Hsu WT, Lin CH, Chiang BL, Jui HY, Wu KK, Lee CM. Prostaglandin E2 potentiates mesenchymal stem cell-induced IL-10+IFN-gamma+CD4+ regulatory T cells to control transplant arteriosclerosis. J Immunol. 2013;190:2372–80.

    Article  CAS  PubMed  Google Scholar 

  12. Engela AU, Baan CC, Dor FJ, Weimar W, Hoogduijn MJ. On the interactions between mesenchymal stem cells and regulatory T cells for immunomodulation in transplantation. Front Immunol. 2012;3:126.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Chen SL, Zhu CC, Liu YQ, Tang LJ, Yi L, Yu BJ, et al. Mesenchymal stem cells genetically modified with the angiopoietin-1 gene enhanced arteriogenesis in a porcine model of chronic myocardial ischaemia. J Int Med Res. 2009;37:68–78.

    Article  CAS  PubMed  Google Scholar 

  14. Abdi R, Fiorina P, Adra CN, Atkinson M, Sayegh MH. Immunomodulation by mesenchymal stem cells: a potential therapeutic strategy for type 1 diabetes. Diabetes. 2008;57:1759–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Yao L, Heuser-Baker J, Herlea-Pana O, Iida R, Wang Q, Zou MH, et al. Bone marrow endothelial progenitors augment atherosclerotic plaque regression in a mouse model of plasma lipid lowering. Stem Cells. 2012;30:2720–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. De Miguel MP, Fuentes-Julian S, Blazquez-Martinez A, Pascual CY, Aller MA, Arias J, et al. Immunosuppressive properties of mesenchymal stem cells: advances and applications. Curr Mol Med. 2012;12:574–91.

    Article  PubMed  Google Scholar 

  17. Wang J, Lin L, Cheng Q, Jiang L. A strong bio-inspired layered PNIPAM-Clay nanocomposite hydrogel. Angew Chem Int Ed. 2012;51:4676–80.

    Article  CAS  Google Scholar 

  18. Shi X-W, Tsao C-Y, Yang X, Liu Y, Dykstra P, Rubloff GW, et al. Electroaddressing of cell populations by co-deposition with calcium alginate hydrogels. Adv Funct Mater. 2009;19:2074–80.

    Article  CAS  Google Scholar 

  19. Kim TG, Park S-H, Chung HJ, Yang D-Y, Park TG. Hierarchically assembled mesenchymal stem cell spheroids using biomimicking nanofilaments and microstructured scaffolds for vascularized adipose tissue engineering. Adv Funct Mater. 2010;20:2303–9.

    Article  CAS  Google Scholar 

  20. Wegst UG, Bai H, Saiz E, Tomsia AP, Ritchie RO. Bioinspired structural materials. Nat Mater. 2015;14:23–36.

    Article  CAS  PubMed  Google Scholar 

  21. Jindal AB, Wasnik MN, Nair HA. Synthesis of thiolated alginate and evaluation of mucoadhesiveness, cytotoxicity and release retardant properties. Indian J Pharm Sci. 2010;72:766–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Yoo JW, Lee JS, Lee CH. Characterization of nitric oxide-releasing microparticles for the mucosal delivery. J Biomed Mater Res A. 2010;92:1233–43.

    PubMed  Google Scholar 

  23. Oh B, Lee CH. Advanced cardiovascular stent coated with nanofiber. Mol Pharm. 2013;10:4432–42.

  24. Cui W, Cheng L, Li H, Zhou Y, Zhang Y, Changa J. Preparation of hydrophilic poly(l-lactide) electrospun fibrous scaffolds modified with chitosan for enhanced cell biocompatibility. Polymer. 2012;53:2298–305.

    Article  CAS  Google Scholar 

  25. Zhong X, Lu Z, Valtchev P, Wei H, Zreiqat H, Dehghani F. Surface modification of poly(propylene carbonate) by aminolysis and layer-by-layer assembly for enhanced cytocompatibility. Colloids Surf B: Biointerfaces. 2012;93:75–84.

    Article  CAS  PubMed  Google Scholar 

  26. Shinohara S, Kihara T, Sakai S, Matsusaki M, Akashi M, Taya M, et al. Fabrication of in vitro three-dimensional multilayered blood vessel model using human endothelial and smooth muscle cells and high-strength PEG hydrogel. J Biosci Bioeng. 2013;116:231–4.

    Article  CAS  PubMed  Google Scholar 

  27. Ankrum JA, Dastidar RG, Ong JF, Levy O, Karp JM. Performance-enhanced mesenchymal stem cells via intracellular delivery of steroids. Sci Rep. 2014;4:4645.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Ren G, Su J, Zhang L, Zhao X, Ling W, L′Huillie A, et al. Species variation in the mechanisms of mesenchymal stem cell-mediated immunosuppression. Stem Cells. 2009;27:1954–62.

    Article  CAS  PubMed  Google Scholar 

  29. Ma S, Xie N, Li W, Yuan B, Shi Y, Wang Y. Immunobiology of mesenchymal stem cells. Cell Death Differ. 2013;21:216–25.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Francois M, Romieu-Mourez R, Li M, Galipeau J. Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation. Mol Ther. 2012;20:187–95.

    Article  CAS  PubMed  Google Scholar 

  31. Braun D, Longman RS, Albert ML. A two-step induction of indoleamine 2,3 dioxygenase (IDO) activity during dendritic-cell maturation. Blood. 2005;106:2375–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Roemeling-van Rhijn M, Mensah FK, Korevaar SS, Leijs MJ, van Osch GJ, Ijzermans JN, et al. Effects of hypoxia on the immunomodulatory properties of adipose tissue-derived mesenchymal stem cells. Front Immunol. 2013;4:203.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Liu Y, Wang W, Acharya G, Shim YB, Choi ES, Lee CH. Advanced stent coating for drug delivery and in vivo biocompatibility. J Nanoparticle Res. 2014;15:1–16.

    Google Scholar 

  34. McLaughlin SGA, Szabo G, Eisenman G, Ciani SM. Surface charge and the conductance of phospholipid membranes*. Proc Natl Acad Sci U S A. 1970;67:1268–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Schmid T, Messmer A, Yeo BS, Zhang W, Zenobi R. Towards chemical analysis of nanostructures in biofilms II: tip-enhanced Raman spectroscopy of alginates. Anal Bioanal Chem. 2008;391:1907–16.

    Article  CAS  PubMed  Google Scholar 

  36. Read ES, Thompson KL, Armes SP. Synthesis of well-defined primary amine-based homopolymers and block copolymers and their Michael addition reactions with acrylates and acrylamides. Polym Chem. 2010;1:221–30.

    Article  CAS  Google Scholar 

  37. Cheng C, Helderman F, Tempel D, Segers D, Hierck B, Poelmann R, et al. Large variations in absolute wall shear stress levels within one species and between species. Atherosclerosis. 2007;195:225–35.

    Article  CAS  PubMed  Google Scholar 

  38. Shrestha S, Irvin MR, Grunfeld C, Arnett DK. HIV, inflammation, and calcium in atherosclerosis. Arterioscler Thromb Vasc Biol. 2014;34:244–50.

    Article  CAS  PubMed  Google Scholar 

  39. Liu J, Chen W, Zhao Z, Xu HH. Reprogramming of mesenchymal stem cells derived from iPSCs seeded on biofunctionalized calcium phosphate scaffold for bone engineering. Biomaterials. 2013;34:7862–72.

    Article  CAS  PubMed  Google Scholar 

  40. Muller P, Bulnheim U, Diener A, Luthen F, Teller M, Klinkenberg ED, et al. Calcium phosphate surfaces promote osteogenic differentiation of mesenchymal stem cells. J Cell Mol Med. 2008;12:281–91.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Laschke MW, Schank TE, Scheuer C, Kleer S, Schuler S, Metzger W, et al. Three-dimensional spheroids of adipose-derived mesenchymal stem cells are potent initiators of blood vessel formation in porous polyurethane scaffolds. Acta Biomater. 2013;9:6876–84.

    Article  CAS  PubMed  Google Scholar 

  42. Huang CC, Chen DY, Wei HJ, Lin KJ, Wu CT, Lee TY, et al. Hypoxia-induced therapeutic neovascularization in a mouse model of an ischemic limb using cell aggregates composed of HUVECs and cbMSCs. Biomaterials. 2013;34:9441–50.

    Article  CAS  PubMed  Google Scholar 

  43. Notara M, Scotchford CA, Grant DM, Weston N, Roberts GA. Cytocompatibility and hemocompatibility of a novel chitosan-alginate gel system. J Biomed Mater Res A. 2009;89:854–64.

    Article  CAS  PubMed  Google Scholar 

  44. Gao W, Lin T, Li T, Yu M, Hu X, Duan D. Sodium alginate/heparin composites on PVC surfaces inhibit the thrombosis and platelet adhesion: applications in cardiac surgery. Int J Clin Exp Med. 2013;6:259–68.

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Kamouna EA, Kenawyb ES, Tamerc TM, El-Meligyb MA, Eldina MSM. Poly (vinyl alcohol)-alginate physically crosslinked hydrogel membranes for wound dressing applications: characterization and bio-evaluation. Arab J Chem. 2015;8:38–47.

    Article  Google Scholar 

  46. Alamein MA, Liu Q, Stephens S, Skabo S, Warnke F, Bourke R, et al. Nanospiderwebs: artificial 3D extracellular matrix from nanofibers by novel clinical grade electrospinning for stem cell delivery. Adv Healthcare Mater. 2013;2:702–17.

    Article  CAS  Google Scholar 

  47. Doshi N, Swiston AJ, Gilbert JB, Alcaraz ML, Cohen RE, Rubner MF, et al. Cell-based drug delivery devices using phagocytosis-resistant backpacks. Adv Mater. 2011;23:H105–9.

    Article  CAS  PubMed  Google Scholar 

  48. Parisi-Amon A, Mulyasasmita W, Chung C, Heilshorn SC. Protein-engineered injectable hydrogel to improve retention of transplanted adipose-derived stem cells. Adv Healthcare Mater. 2013;2:428–32.

    Article  CAS  Google Scholar 

  49. Naito H, Yoshimura M, Mizuno T, Takasawa S, Tojo T, Taniguchi S. The advantages of three-dimensional culture in a collagen hydrogel for stem cell differentiation. J Biomed Mater Res A. 2013;101:2838–45.

    Article  PubMed  Google Scholar 

  50. Cheng Y, Tsao C-Y, Wu H-C, Luo X, Terrell JL, Betz J, et al. Electroaddressing functionalized polysaccharides as model biofilms for interrogating cell signaling. Adv Funct Mater. 2012;22:519–28.

    Article  CAS  Google Scholar 

  51. Yang X, Kim E, Liu Y, Shi X-W, Rubloff GW, Ghodssi R, et al. In-film bioprocessing and immunoanalysis with electroaddressable stimuli-responsive polysaccharides. Adv Funct Mater. 2010;20:1645–52.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This research was supported in part by funds provided from Graduate Studies Research Grant program, UMKC and Dean’s Bridge Fund program from School of Pharmacy, UMKC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi H. Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, B., Melchert, R.B. & Lee, C.H. Biomimicking Robust Hydrogel for the Mesenchymal Stem Cell Carrier. Pharm Res 32, 3213–3227 (2015). https://doi.org/10.1007/s11095-015-1698-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1698-y

KEY WORDS

Navigation