Skip to main content

Advertisement

Log in

In Silico Predictions of Human Skin Permeability using Nonlinear Quantitative Structure–Property Relationship Models

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Predicting human skin permeability of chemical compounds accurately and efficiently is useful for developing dermatological medicines and cosmetics. However, previous work have two problems; 1) quality of databases used, and 2) methods for prediction models. In this paper, we attempt to solve these two problems.

Methods

We first compile, by carefully screening from the literature, a novel dataset of chemical compounds with permeability coefficients, measured under consistent experimental conditions. We then apply machine learning techniques such as support vector regression (SVR) and random forest (RF) to our database to develop prediction models. Molecular descriptors are fully computationally obtained, and greedy stepwise selection is employed for descriptor selection. Prediction models are internally and externally validated.

Results

We generated an original, new database on human skin permeability of 211 different compounds from aqueous donors. Nonlinear SVR achieved the best performance among linear SVR, nonlinear SVR, and RF. The determination coefficient, root mean square error, and mean absolute error of nonlinear SVR in external validation were 0.910, 0.342, and 0.282, respectively.

Conclusions

We provided one of the largest datasets with purely experimental log k p and developed reliable and accurate prediction models for screening active ingredients and seeking unsynthesized compounds of dermatological medicines and cosmetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ALOGP:

Ghose–Crippen octanol–water partition coefficient

ANN:

Artificial neural network

C d :

Chemical concentration in dose formulation

J ss :

Steady state flux of the solute

K :

Skin–vehicle partition coefficient

k p :

Permeability coefficient

L :

Thickness of the skin

log P:

Octanol–water partition coefficient

MAE:

Mean absolute error

MW:

Molecular weight

PCA:

Principal component analysis

QSPR:

Quantitative structure–property relationship

R 2 :

Determination coefficient

RF:

Random forest

RMSE:

Root mean square error

SVR:

Support vector regression

SVR-G:

Support vector regression with Gaussian (radial basis function) kernel

SVR-L:

Support vector regression with linear kernel

References

  1. Bartek MJ, LaBudde JA, Maibach HI. Skin permeability in vivo: comparison in rat, rabbit, pig and man. J Investig Dermatol. 1972;58(3):114–23.

    Article  CAS  PubMed  Google Scholar 

  2. Franz TJ. Percutaneous absorption on the relevance of in vitro data. J Investig Dermatol. 1975;64(3):190–5.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang Q, Grice JE, Li P, Jepps OG, Wang GJ, Roberts MS. Skin solubility determines maximum transepidermal flux for similar size molecules. Pharm Res. 2009;26(8):1974–85.

    Article  CAS  PubMed  Google Scholar 

  4. Takeuchi H, Ishida M, Furuya A, Todo H, Urano H, Sugibayashi K. Influence of skin thickness on the in vitro permeabilities of drugs through Sprague-Dawley rat or Yucatan micropig skin. Biol Pharm Bull. 2012;35(2):192–202.

    Article  CAS  PubMed  Google Scholar 

  5. Karadzovska D, Riviere JE. Assessing vehicle effects on skin absorption using artificial membrane assays. Eur J Pharm Sci. 2013;50(5):569–76.

    Article  CAS  PubMed  Google Scholar 

  6. Blank IH, McAuliffe DJ. Penetration of benzene through human skin. J Investig Dermatol. 1985;85(6):522–6.

    Article  CAS  PubMed  Google Scholar 

  7. Flynn GL. Physicochemical determinants of skin absorption. In: Gerrity TR, Henry CJ, editors. Principles of route-to-route extrapolation for risk assessment. 1st ed. New York: Elsevier; 1990. p. 93–127.

    Google Scholar 

  8. Wilschut A, ten Berge WF, Robinson PJ, McKone TE. Estimating skin permeation. The validation of five mathematical skin permeation models. Chemosphere. 1995;30(7):1275–96.

    Article  CAS  PubMed  Google Scholar 

  9. Kirchner LA, Moody RP, Doyle E, Bose R, Jeffery J, Chu I. The prediction of skin permeability by using physicochemical data. ATLA. 1997;25:359–70.

    Google Scholar 

  10. Patel H, ten Berge W, Cronin MT. Quantitative structure-activity relationships (QSARs) for the prediction of skin permeation of exogenous chemicals. Chemosphere. 2002;48(6):603–13.

    Article  CAS  PubMed  Google Scholar 

  11. Chauhan P, Shakya M. Role of physicochemical properties in the estimation of skin permeability: in vitro data assessment by partial least-squares regression. SAR QSAR Environ Res. 2010;21(5–6):481–94.

    Article  CAS  PubMed  Google Scholar 

  12. Khajeh A, Modarress H. Linear and nonlinear quantitative structure-property relationship modelling of skin permeability. SAR QSAR Environ Res. 2014;25(1):35–50.

    Article  CAS  PubMed  Google Scholar 

  13. Moss GP, Sun Y, Wilkinson SC, Davey N, Adams R, Martin GP, et al. The application and limitations of mathematical modelling in the prediction of permeability across mammalian skin and polydimethylsiloxane membranes. J Pharm Pharmacol. 2011;63(11):1411–27.

    Article  CAS  PubMed  Google Scholar 

  14. Vecchia BE, Bunge AL. Skin absorption databases and predictive equations. In: Guy R, Hadgraft J, editors. Transdermal drug delivery. 2nd ed. New York: Marcel Dekker; 2003. p. 57–141.

    Google Scholar 

  15. Roberts MS, Pugh WJ, Hadgraft J, Watkinson AC. Epidermal permeability-penetrant structure relationships: 1. An analysis of methods of predicting penetration of monofunctional solutes from aqueous solutions. Int J Pharm. 1995;126(1–2):219–33.

    Article  CAS  Google Scholar 

  16. Ghafourian T, Fooladi S. The effect of structural QSAR parameters on skin penetration. Int J Pharm. 2001;217(1–2):1–11.

    Article  CAS  PubMed  Google Scholar 

  17. Panchagnula R, Stemmer K, Ritschel WA. Animal models for transdermal drug delivery. Methods Find Exp Clin Pharmacol. 1997;19(5):335–41.

    CAS  PubMed  Google Scholar 

  18. Lehman PA, Raney SG, Franz TJ. Percutaneous absorption in man in vitro-in vivo correlation. Skin Pharmacol Physiol. 2011;24(4):224–30.

    Article  CAS  PubMed  Google Scholar 

  19. Potts RO, Guy RH. Predicting skin permeability. Pharm Res. 1992;9(5):663–9.

    Article  CAS  PubMed  Google Scholar 

  20. Lim CW, Fujiwara S, Yamashita F, Hashida M. Prediction of human skin permeability using a combination of molecular orbital calculations and artificial neural network. Biol Pharm Bull. 2002;25(3):361–6.

    Article  CAS  PubMed  Google Scholar 

  21. Katritzky AR, Dobchev DA, Fara DC, Hür E, Tämm K, Kurunczi L, et al. Skin permeation rate as a function of chemical structure. J Med Chem. 2006;49(11):3305–14.

    Article  CAS  PubMed  Google Scholar 

  22. Chen LJ, Lian GP, Han LJ. Prediction of human skin permeability using artificial neural network (ANN) modeling. Acta Pharmacol Sin. 2007;28(4):591–600.

    Article  CAS  PubMed  Google Scholar 

  23. Patel J. Science of the science, drug discovery and artificial neural networks. Curr Drug Discov Technol. 2013;10(1):2–7.

    CAS  PubMed  Google Scholar 

  24. Castillo E, Fontenla-Romero O, Guijarro-Berdiñas B, Alonso-Betanzos A. A global optimum approach for one-layer neural networks. Neural Comput. 2002;14(6):1429–49.

    Article  PubMed  Google Scholar 

  25. El-Sebakhy EA. Forecasting PVT properties of crude oil systems based on support vector machines modeling scheme. J Petrol Sci Eng. 2009;64(1–4):25–34.

    Article  CAS  Google Scholar 

  26. Smola AJ, Schölkopf B. A tutorial on support vector regression. Stat Comput. 2004;14(3):199–222.

    Article  Google Scholar 

  27. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.

    Article  Google Scholar 

  28. Wang Y, Zheng M, Xiao J, Lu Y, Wang F, Lu J, et al. Using support vector regression coupled with the genetic algorithm for predicting acute toxicity to the fathead minnow. SAR QSAR Environ Res. 2010;21(5–6):559–70.

    Article  CAS  PubMed  Google Scholar 

  29. Yap CW, Li ZR, Chen YZ. Quantitative structure-pharmacokinetic relationships for drug clearance by using statistical learning methods. J Mol Graph Model. 2006;24(5):383–95.

    Article  CAS  PubMed  Google Scholar 

  30. Chu A, Ahn H, Halwan B, Kalmin B, Artifon EL, Barkun A, et al. A decision support system to facilitate management of patients with acute gastrointestinal bleeding. Artif Intell Med. 2008;42(3):247–59.

    Article  PubMed  Google Scholar 

  31. Monte-Moreno E. Non-invasive estimate of blood glucose and blood pressure from a photoplethysmograph by means of machine learning techniques. Artif Intell Med. 2011;53(2):127–38.

    Article  PubMed  Google Scholar 

  32. Hsieh CH, Lu RH, Lee NH, Chiu WT, Hsu MH, Li YC. Novel solutions for an old disease: diagnosis of acute appendicitis with random forest, support vector machines, and artificial neural networks. Surgery. 2011;149(1):87–93.

    Article  PubMed  Google Scholar 

  33. Robert GP, Yang W. Density-functional theory of atoms and molecules. Oxford: Oxford University Press; 1989.

    Google Scholar 

  34. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, et al. General atomic and molecular electronic structure system. J Comput Chem. 1993;14(11):1347–63.

    Article  CAS  Google Scholar 

  35. Gordon MS, Schmidt MW. Advances in electronic structure theory: GAMESS a decade later. In: Dykstra CE, Frenking G, Kim KS, Scuseria GE, editors. Theory and applications of computational chemistry: the first forty years. Amsterdam: Elsevier; 2005. p. 1167–89.

    Chapter  Google Scholar 

  36. Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter. 1988;37(2):785–9.

    Article  CAS  PubMed  Google Scholar 

  37. Beck AD. A new mixing of Hartree-Fock and local density‐functional theories. J Chem Phys. 1993;98:1372–7.

    Article  Google Scholar 

  38. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. 2013. Available from http://www.R-project.org/.

  39. Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20(3):273–97.

    Google Scholar 

  40. Vapnik V. Statistical learning theory. New York: Wiley; 1998.

    Google Scholar 

  41. Meyer D, Dimitriadou E, Hornik K, Weingessel A, Leisch F. e1071: Misc Functions of the Department of Statistics (e1071), TU Wien. R package version 1.6–2. 2014. Available from http://CRAN.R-project.org/package=e1071/.

  42. Svetnik V, Liaw A, Tong C, Culberson JC, Sheridan RP, Feuston BP. Random forest: a classification and regression tool for compound classification and QSAR modeling. J Chem Inf Comput Sci. 2003;43(6):1947–58.

    Article  CAS  PubMed  Google Scholar 

  43. Liaw A, Wiener M. Classification and regression by randomForest. R News. 2002;2:18–22.

    Google Scholar 

  44. Burman P. A Comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods. Biometrika. 1989;76(3):503–14.

    Article  Google Scholar 

  45. Shao J. Linear model selection by cross-validation. J Am Stat Assoc. 1993;88(442):486–94.

    Article  Google Scholar 

  46. Zhang P. Model selection via multifold cross validation. Ann Stat. 1993;21(1):486–94.

    Article  Google Scholar 

  47. Golbraikh A, Tropsha A. Beware of q2! J Mol Graph Model. 2002;20(4):269–76.

    Article  CAS  PubMed  Google Scholar 

  48. Roy PP, Roy K. On some aspects of variable selection for partial least squares regression models. QSAR Comb Sci. 2008;27(3):302–13.

    Article  CAS  Google Scholar 

  49. Abraham MH, Martins F, Mitchell RC. Algorithms for skin permeability using hydrogen bond descriptors: the problem of steroids. J Pharm Pharmacol. 1997;49(9):858–65.

    Article  CAS  PubMed  Google Scholar 

  50. Neumann D, Kohlbacher O, Merkwirth C, Lengauer T. A fully computational model for predicting percutaneous drug absorption. J Chem Inf Model. 2006;46(1):424–9.

    Article  CAS  PubMed  Google Scholar 

  51. Neely BJ, Madihally SV, Robinson Jr RL, Gasem KA. Nonlinear quantitative structure-property relationship modeling of skin permeation coefficient. J Pharm Sci. 2009;98(11):4069–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu Y, et al. DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res. 2014;42:D1091–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. We have obtained structures of 6213 compounds in DrugBank: http://www.drugbank.ca/downloads#structures/.

  54. Bos JD, Meinardi MM. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol. 2000;9(3):165–9.

    Article  CAS  PubMed  Google Scholar 

  55. Yano T, Nakagawa A, Tsuji M, Noda K. Skin permeability of various non-steroidal anti-inflammatory drugs in man. Life Sci. 1986;39(12):1043–50.

    Article  CAS  PubMed  Google Scholar 

  56. Flynn GL, Yalkowsky SH. Correlation and prediction of mass transport across membranes. I. Influence of alkyl chain length on flux-determining properties of barrier and diffusant. J Pharm Sci. 1972;61(6):838–52.

    Article  CAS  PubMed  Google Scholar 

  57. González MP, Terán C, Teijeira M, Helguera AM. Quantitative structure activity relationships as useful tools for the design of new adenosine receptor ligands. 1. Agonist. Curr Med Chem. 2006;13(19):2253–66.

    Article  PubMed  Google Scholar 

  58. Leardi R, Boggia R, Terrile M. Genetic algorithms as a strategy for feature selection. J Chemom. 1992;6(5):267–81.

    Article  CAS  Google Scholar 

  59. Shamsipur M, Zare-Shahabadi V, Hemmateenejad B, Akhond M. An efficient variable selection method based on the use of external memory in ant colony optimization. Application to QSAR/QSPR studies. Anal Chim Acta. 2009;646(1–2):39–46.

    Article  CAS  PubMed  Google Scholar 

  60. Lin WQ, Jiang JH, Shen Q, Shen GL, Yu RQ. Optimized block-wise variable combination by particle swarm optimization for partial least squares modeling in quantitative structure-activity relationship studies. J Chem Inf Model. 2005;45(2):486–93.

    Article  CAS  PubMed  Google Scholar 

  61. Barratt MD. Quantitative structure-activity relationships for skin permeability. Toxicol in Vitro. 1995;9(1):27–37.

    Article  CAS  PubMed  Google Scholar 

  62. Kasting GB, Smith RL, Cooper ER. Effect of lipid solubility and molecular size on percutaneous absorption. In: Shroot B, Schaefer H, editors. Skin pharmacokinetics. Basel: Kargar; 1987. p. 138–53.

    Google Scholar 

  63. Cronin MT, Dearden JC, Moss GP, Murray-Dickson G. Investigation of the mechanism of flux across human skin in vitro by quantitative structure-permeability relationships. Eur J Pharm Sci. 1999;7(4):325–30.

    Article  CAS  PubMed  Google Scholar 

  64. Buchwald P, Bodor N. A simple, predictive, structure-based skin permeability model. J Pharm Pharmacol. 2001;53(9):1087–98.

    Article  CAS  PubMed  Google Scholar 

  65. Basak SC, Mills D, Mumtaz MM. A quantitative structure-activity relationship (QSAR) study of dermal absorption using theoretical molecular descriptors. SAR QSAR Environ Res. 2007;18(1–2):45–55.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromi Baba.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 63 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baba, H., Takahara, Ji. & Mamitsuka, H. In Silico Predictions of Human Skin Permeability using Nonlinear Quantitative Structure–Property Relationship Models. Pharm Res 32, 2360–2371 (2015). https://doi.org/10.1007/s11095-015-1629-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1629-y

KEY WORDS

Navigation